
december 2009 | vol. 52 | no. 12 | communications of the acm 81

Designing Plush Toys
with a Computer
By Yuki Igarashi and Takeo Igarashi

doi:10.1145/1610252.1610275

Abstract
We introduce Plushie, an interactive system that allows non-
professional users to design their own original plush toys.
To design a plush toy, one needs to construct an appropriate
two-dimensional (2D) pattern. However, it is difficult for non-
professional users to appropriately design a 2D pattern. Some
recent systems automatically generate a 2D pattern for a given
three-dimensional (3D) model, but constructing a 3D model
is itself a challenge. Furthermore, an arbitrary 3D model can-
not necessarily be realized as a real plush toy, and the final
sewn result can be very different from the original 3D model.
We avoid this mismatch by constructing appropriate 2D pat-
terns and applying simple physical simulation to it on the fly
during 3D modeling. In this way, the model on the screen is
always a good approximation of the final sewn result, which
makes the design process much more efficient. We use a
sketching interface for 3D modeling and also provide various
editing operations tailored for plush-toy design. Internally,
the system constructs a 2D cloth pattern in such a way that
the simulation result matches the user’s input stroke. We
successfully demonstrated that nonprofessional users could
design plush toys or balloon easily using Plushie.

1. INTRODUCTION
A computer can be a powerful tool for designing real-
world objects. One can build a virtual three-dimensional
(3D) model on a computer using computer-aided design
(CAD) and use the model to run various simulations with
computer-aided engineering (CAE) without the need
to build or damage costly real objects. The benefits are
evident in many areas from architecture to automobile
design. However, these tools are mainly designed for pro-
fessional users and are not particularly accessible to the
ordinary person. The construction of a 3D model using a
standard CAD system is tedious, and running a physical
simulation using a standard CAE system requires a certain
level of expertise.

Our goal is to bring the benefits of CAD and CAE to the
hands of nonprofessional users including children. This
article introduces our plush-toy design system,18 Plushie, as
an example of our efforts to achieve this goal. Plush toys are
familiar objects in our daily lives, but their design is diffi-
cult. One must design an appropriate two-dimensional (2D)
pattern to obtain a particular 3D shape, but the relation-
ship between the two is nontrivial, and intensive experience
and knowledge are required to achieve satisfactory results.
As a result, most people simply buy ready-made plush toys
and do not enjoy the design and construction of their own.

We have provided a way for people to design their own toys
using a simple but powerful modeling tool that tightly inte-
grates a sketching interface with physical simulation in the
modeling process.

Plushie allows the user to design a plush toy from scratch
by simple sketching operations.18 The user first draws the
desired silhouette, and the system automatically generates
a 3D plush-toy model and corresponding 2D cloth pattern.
The user can also edit the model, e.g., cut it or add a part,
using a simple sketching interface, and the 3D model and
2D cloth pattern are automatically updated. The 3D model
is the result of a physical simulation that mimics the infla-
tion of the sewn 2D cloth patch. Therefore, the model on
the screen is always a good estimate of the final sewn result
(Figure 1). When we ran workshops in a museum to have
novice users try our system, we observed that even children
could design their own plush toys.

We first give an overview of sketching interfaces for 3D
modeling and previous efforts to enable end users to design
physical objects. We then describe the user interface and
implementation of the Plushie system, followed by results
and user experiences. Finally, we conclude the article with
some discussion of future work.

2. SKETCHING INTERFACES FOR 3D MODELING
The sketching interface part of Plushie is an evolution of the
Teddy system we presented in 1999.11 That system allowed the
user to create an interesting 3D model simply by sketching a
silhouette of the target model (Figure 2, left). It was designed
for the modeling of free-form rotund models, a task that is
particularly difficult using standard modeling interfaces.
Figure 3 shows an example of a modeling sequence using
Teddy. The user’s strokes are shown in red, and everything
else is inferred and drawn by the system. The user first draws

A previous version of this paper appeared in Proceedings
of SIGGRAPH 2007/ACM Transactions on Graphics 26,
3 (2007), 45.

Figure 1. Overview of Plushie system.

82 communications of the acm | december 2009 | vol. 52 | no. 12

research highlights

modeling to create only models that are physically realiz-
able. In this way, the user can more efficiently explore the
design dimensions within realistic constraints. From the
user’s point of view, the model generated by the system
may not correspond exactly to the shape that was input,
but it will be a physically realizable shape reflecting the
input shape.

Some recent systems have tried to incorporate fast physi-
cal simulation into an interactive design process. Igarashi
and Hughes developed a mark-based interface for putting
clothing on a virtual character,10 and Decaudin et al. pro-
posed a system for designing an original garment via sketch-
ing.6 Both used simple geometric simulations to represent
the physical properties of cloth material. Masry and Lipson
described a system in which the user can quickly build a CAD
model by sketching and immediately apply a finite element
analysis to the model.15 However, the model construction is
computed before the simulation in these systems, and no
dynamic feedback loop exists between the simulation result
and the original user input.

Several efforts have also been made to support the design
of physical objects by end users in the computer graphics
research community. Mitani and Suzuki16 and Shatz et al.22
presented automatic segmentation of a 3D model into sur-
face patches that can be perfectly flattened onto a plane
without distortion for constructing paper craft models.
Similarly, Julius et al. proposed similar method for plush
toys14 allowing small distortion. Pillow system17 facilitates
the manual segmentation of a model by providing automatic
flattening and by showing the result of physical simulation.
These systems make plush-toy design more accessible, but
the fundamental challenge of creating an original plush toy
is still unresolved.

4. THE PLUSHIE SYSTEM
The system consists of two windows: one shows the 3D
plush-toy model being constructed and the other shows
the corresponding 2D pattern (Figure 4). The user works on
the 3D view, interactively building the 3D model by using a
sketching interface. The 2D view is mainly for reference but
the user can also edit the 2D pattern directly when desired.
The 3D model is produced from a physical simulation of
the assembled 2D pattern. After each input from the user,

the silhouette of the base primitive, and the system gener-
ates the corresponding 3D geometry. The user then draws
a stroke across the model and the system cuts the model at
the line. The user can also add parts to the base model by
drawing two strokes. Figure 2 right shows several 3D models
created using the system.

Several sketching systems for free-form shapes were devel-
oped after Teddy. The original Teddy system used polygonal
meshes, but some later systems experimented with other
representations such as voxels20 and implicit surfaces.2
Some systems extended the interface to support subsequent
editing by direct manipulation. ShapeShop21 represents
a model as a collection of blob primitives and allows the
user to move or scale each primitive. Fibermesh19 keeps the
original stroke as a control curve on the model surface and
allows the user to adjust the shape by deforming the curves.
However, all these systems are designed for purely virtual 3D
models without consideration of the physical properties of
materials. Plushie is innovative in that it shows the feasibil-
ity of using a sketching interface for free-form shapes in the
design of physical objects.

3. DESIGNING PHYSICAL MODELS WITH
A COMPUTER
Another key aspect of our work is the tight integration of
physical simulation into the 3D modeling process. In tra-
ditional applications, modeling and simulation are com-
pletely separate. A virtual model is created in 3D modeling
software without considering any physical constraints,
and it is then passed to a simulation environment. If the
simulation result reveals a problem, the user returns to
the model to fix the problem. We made this process more
efficient by running the simulation concurrently with the

Figure 2. Screenshot of Teddy and sample 3D models created using
the system.

Figure 3. Modeling session in Teddy. The user can create a 3D model
using simple sketching operations.

Figure 4. A screen snapshot of the Plushie system.

december 2009 | vol. 52 | no. 12 | communications of the acm 83

thumbnail and the system updates the main model accord-
ingly. We found that the ability to create thin parts with a
single stroke is particularly useful. They are frequently seen
in real toys and are difficult to design using standard model-
ing software. Figure 20 shows a couple of example models
with thin parts.
Pull: The user can grab a seam line and pull it to modify
the shape. For example, the user can pull an ear to make it
larger when it is smaller than the other (Figure 8). The pull-
ing operation begins when the user starts dragging on the
background region near a seam line. The system changes
the mouse cursor when it approaches a seam line to indi-
cate that the user can start pulling. We use the peeling inter-
face introduced by Igarashi et al.12 to adjust the size of the
region to be deformed, that is, the larger area is deformed
as the user pulls more. The system continuously updates the
2D cloth pattern during pulling and shows the simulation
result in the 3D view.
Insertion and Deletion of Seam Lines: The modeling opera-
tions performed thus far automatically generate 2D patches
according to predefined algorithms and seam lines (patch
boundaries) appear on the 3D model surface without the
user’s explicit control. However, it is sometimes desir-
able for knowledgeable users to design seam lines manu-
ally, for more detailed control. This is especially important
when using nonstretchy cloth as in balloon models because
one needs to divide a rounded surface into many almost-
developable small patches (Figure 19 bottom).

The user can add a new seam in the seam line drawing
mode by drawing a free-form stroke on the model surface
(Figure 9). The corresponding cloth patch is then auto-
matically cut along the new seam line. If the stroke crosses
the entire patch, the patch is divided into two separate

the system updates the 2D pattern so that the simulation
result matches the user input. This guarantees that the
model is always realizable as a real plush toy and that the
2D pattern is readily usable as a template for cutting and
sewing real fabric.

The modeling operations are based on the Teddy sys-
tem.11 The user interactively draws free-form strokes on the
canvas as gestures and the system automatically generates
a 3D model and corresponding 2D cloth pattern. We also
provide some special editing operations tailored for plush-
toy design.
Creating a New Model: Starting with a blank canvas, the user
creates a new plush-toy model by drawing its silhouette as a
closed free-form stroke. The system automatically generates
two cloth patches corresponding to the stroke and visual-
izes the shape of the resulting plush toy by applying a simple
physical simulation (Figure 5).
Cut: The user can cut the model by drawing a stroke that
starts outside of the model, crosses it, and ends outside of
the model (Figure 6). The model is cut at the intersection and
flat patch is generated at the cross-section. This operation is
useful for creating relatively flat surfaces, such as those in a
foot or belly.
Creation of a Part: The user can add protruding parts such
as the ears and arms to the base model by drawing a single
stroke that defines the silhouette of the part. The stroke
should start and end on the base model (Figure 7a). The sys-
tem generates two candidate shapes and presents them to
the user as suggestions9 (Figure 7b). One is for fat, rounded
parts like the body, arm, and leg (Figure 7c). Their base is
connected to the base model with an open hole. The other
candidate shape is for thin parts like ears and the tail
whose base is closed (Figure 7d). The user clicks the desired

Figure 5. Creating a new model.

Figure 6. Cut operation.

Figure 7. User interface of part creation. (a) The user draws a stroke
and (b) the system suggests two different possibilities. The user
chooses one (c, d).

(a) (b)

(c)

(d)

Figure 8. User interface of the pull operation.

84 communications of the acm | december 2009 | vol. 52 | no. 12

research highlights

patch. The system provides an automatic layout and manual
arrangement interface for preparing the final pattern to be
printed.

The system also allows the user to edit the patches directly
by using the pulling interface. The user can grab the bound-
ary of a patch and pull it to deform the shape.12 We again use
a peeling interface to adjust the size of area to be deformed.
The effect of 2D deformation immediately appears in the
3D view because of the physical simulation. The ability to
deform an individual patch is useful for designing asym-
metric shapes such as a penguin belly (Figure 12). The pull
operation is also useful for opening a dart line to make a flat
patch swell more (Figure 13).

5. IMPLEMENTATION
This section briefly describes the implementation of
Plushie. A more detailed description is found in our original
paper.18 We use a standard triangle mesh for the represen-
tation of the 3D model and 2D patches. We use a relatively
coarse mesh (1000–2000 vertices) to achieve interactive
performance. Each vertex, edge, and face of the 3D mesh
is associated with corresponding entities in the 2D mesh.
A 3D mesh is always given as a result of applying a physical
simulation to the assembled 2D pattern. To be more pre-
cise, the physical simulation applied to the 3D mesh is gov-
erned by the rest length of each edge and the rest length is
defined in the 2D mesh. For each modeling operation, the
system constructs the initial 2D patches and the 3D geom-
etry corresponding to the input stroke, and then runs a
physical simulation to update the 3D geometry. The system
then adjusts the patch shape so that the simulation results
match the input strokes.

5.1. Physical simulation
We use a simple static method for the physical simulation.
We examined other, more elaborate methods, such as
finite element methods,8 dynamic simulation,5 and energy
minimization,4 but we found that the simple approach is

Figure 10. Deletion of a seam line.

Figure 11. Patches connected to each other using connectors (b) and
numbers (c).

(a) (b) (c)

Figure 12. Pulling a 2D patch.

Figure 13. Opening a dart line.

Figure 9. Insertion of a seam line. (a) Before drawing a line, (b) after
drawing a line, (c) the seam line’s two endpoints snap at other seam
lines, and (d) After pulling the seam line.

(a) (b) (c) (d)

patches. If the stroke starts or ends in the middle of a
patch, it becomes a dart. The 3D geometry does not change
immediately after the insertion of these seam lines, but the
user can pull the seam line afterwards to modify the shape.
This operation is very useful for creating a salient feature
in the middle of a flat patch. Deletion is achieved by trac-
ing the target seam line in the erasing mode. This merges
the separated patches together and thus flattens the area
(Figure 10).
Operations on the 2D Pattern View: The 2D pattern view is
mainly used to preview the pattern to be printed for sewing,
but it also works as an interface for advanced users to edit the
pattern directly. The preview helps the user to understand
the relationship between the 3D model and 2D patches and
gives a sense of the labor required for assembling the patches.
The system can display how patches are connected by show-
ing connectors or paired numbers (Figure 11). Connectors
are useful for understanding the relationship on the screen
and numbers are useful as a printed reference on each

december 2009 | vol. 52 | no. 12 | communications of the acm 85

This simple algorithm works well in practice for our
application. Figure 16 shows some examples in which our
algorithm successfully found appropriate 2D patches that
yielded the desired 3D shapes. In some situations, the
input shape is not realizable as a plush-toy model con-
sisting of two patches. For example, a sharp concavity is
not realizable without causing self-intersection in the 2D
patch. In these cases, the system terminates the optimiza-
tion process, leaving a gap between the input stroke and
the 3D model. This indicates that the desired shape is not
possible with two patches. The user must add additional
seam lines to obtain more control.
Cut: The system constructs a curved surface by sweep-
ing the cutting stroke on the screen to the viewing
direction and dividing the mesh along the surface. The
right-hand side of the surface is removed and a new mesh
is created on the cross-section. The cross-section is always
developable, so the system simply flattens it and uses it as
a 2D patch. The system then applies the inflation process
to the model. Note that the silhouette of the inflated 3D
model does not exactly matches with the input cut stroke
because we do not apply any adjustment as in the initial
creation.

best suited for our purpose. It is easy to implement, fast
enough for interactive modeling, and sufficiently robust
for dealing with adverse user operations. More impor-
tantly, it produces a reasonable estimation of the result-
ing plush-toy shape. As shown in Figure 14, it successfully
reproduces characteristic behaviors seen in the stuffed
cloth. This algorithm is also used in a garment capture
system.3

In each simulation cycle, the system first moves each
face slightly in its normal direction to mimic the effect of
internal pressure (Figure 14a). The system then adjusts the
length of each edge to preserve the integrity of the cloth
material5 (Figure 14b). We decided to prevent stretching
only and tolerate compression because plush toys’ rotund
shape is generated from compression (small wrinkles)
along the seam lines. The second part (adjustment of edge
length) runs 10 times in each cycle to prevent excessive
stretch. It takes ~30 simulation cycles (2 s) to converge in
our typical examples. Although it is possible to show the
result only after the convergence, we decided to show the
intermediate shape because test users preferred to see the
inflation process.

5.2. 3D modeling operations
Creating a New Model: The input stroke is projected onto an
invisible plane at the center of the world facing the screen,
and the system generates an initial two-sided mesh inside of
the closed region. Each side of the mesh is used directly as a
2D patch for the model. The system then applies the physical
simulation to the mesh. It inflates the mesh to the direction
perpendicular to the viewing direction, but its silhouette
actually becomes smaller as it inflates (Figure 15). The sys-
tem waits until the simulation converges and then starts to
adjust the 2D pattern so that the simulation result matches
the input stroke. Specifically, the system calculates the dis-
tance di from a vertex vi of the 3D mesh along the seam line
to the corresponding point pi in the projected input stroke
along its normal direction, and moves the corresponding
2D vertex ui on the patch boundary to its normal direction
by that amount di. After modifying the patch boundary, the
system updates the 2D mesh so that vertices are uniformly
distributed inside of the patch. The length of the edges in
the updated 2D mesh is then used as the new rest length
in the simulation. The system repeats this adjustment pro-
cess and the physical simulation until convergence. It takes
approximately 20 iterations (2 seconds) to converge in our
typical examples.

Figure 15. Adjustment process after creation. The system enlarges
the 2D pattern so that the simulation result matches the input
stroke. The 2D boundary vertex (u) moves in its normal direction by
the amount proportional to the distance between the corresponding
3D vertex and the input stroke.

pi

ui

di

di

ni

n

Figure 14. Our simple model to mimic stuffing effect. Internal
pressure pushes vertices outwards (a) and edge springs pull
them back (b).

(a) (b)

Figure 16. Physical simulation and shape adjustment. The red
lines indicate the input strokes. The top row shows the result
of converting the input into patterns directly, and the bottom
row shows the outcome when the adjustment process is applied
to the patterns. The green shapes in the middle show the simulation
results and the brown ones on the right show the real fabric
models, both resulting from the 2D pattern on the left.

86 communications of the acm | december 2009 | vol. 52 | no. 12

research highlights

the original position vi to the target position hi, and moves
the corresponding vertices ui

0 and ui
1 in the 2D mesh in

their local coordinate frames by that amount di. These 3D
and 2D coordinate frames are defined by the pulled ver-
tex’s normal vector and the direction of the seam line. The
system iterates this displacement process with physical
simulation until it converges. To achieve a smooth defor-
mation, the system also moves the surrounding vertices
in the 2D mesh using the curve manipulation method
introduced in Igarashi et al.12 It enlarges the region to be
deformed proportional to the displacement of the pulled
vertex.
Insertion and Deletion of Seam Lines: Insertion of a new
seam line is straightforward. The system simply cuts the
patch along the added seam line, and basically does not
change the result of simulation. Deletion is more compli-
cated because the merged patch is not necessarily devel-
opable. The system applies an approximate flattening
operation23 to the merged 3D surface to obtain the geometry
of the new 2D patch.

6. RESULTS
Plushie is implemented as a Java™ program. Construction
of 2D patterns and a physical simulation run in real-time
on a 1.1 GHz Pentium M PC. We designed a couple of
plush toys using our system and created a real toy based
on the printed pattern. A modeling session typically takes
10–20 min and sewing takes 3–5 h. Figure 19 shows a plush
toy and balloon model designed in our system. It shows
that the physical simulation successfully captures the over-
all shape of the real objects. We interviewed with profes-
sional balloon designers and they supported our system,
saying that it can significantly reduce the time necessary
for designing original balloon.

The user can assign different textures to individual
patches (Figure 20). Therefore the user can explore various
design possibilities before actuary sewing the real fabric
(such as Figure 20 right). These models also demonstrate
the effectiveness of thin parts.

We ran four small workshops to test the usability of the
system and found that novice users, mainly children, can
successfully create original plush toys using our system.
Here is an observation from one of these workshops. Nine

Creation of a Part: The system first projects the two end-
points of the input stroke onto the base model surface.
A plane that passes through these 3D points and is facing
toward the screen is constructed and the input stroke is
projected onto it. The system then draws an ellipse on the
model surface for constructing a fat part and draws a line for
creating a thin part (Figure 17). The ellipse or the line (what
we call base curves) is also projected to the plane. The sys-
tem generates a 2D mesh on the projection plane in the area
enclosed by the projected input stroke and the projected
base curve. The 2D mesh is duplicated and serves as 2D pat-
tern and as the initial 3D geometry for the added part. As in
the initial model creation case, the flat two-sided 3D mesh is
inflated by physical simulation. The silhouette of the added
part gradually shrinks and the system enlarges the 2D pat-
tern so that the silhouette matches the input stroke as in
initial creation.

In case of a part with an elliptic base curve, the system
cuts open the base surface and stitches it with the newly cre-
ated mesh. The result is a single connected mesh, and phys-
ical simulation is applied uniformly to the entire mesh. On
the other hand, the system does not open the base mesh
in case of the linear base curve. The new part is created as
an independent closed mesh and the simulation is applied
separately to the base mesh and the new part. The base
mesh inflates independently of the part mesh, and the base
curve is treated as a positional constraint in the simulation
of the part mesh (we simply do not move these vertices in
the simulation cycle).
Pull: The pull operation is a bit involved because the sys-
tem cannot directly modify the 3D mesh and must do so
indirectly by deforming the corresponding 2D pattern. As
the user starts pulling a vertex on a seam line, the system
first constructs a projection plane that passes through
the seam line (Figure 18). The mouse cursor position on
the screen is projected onto the projection plane, and it is
used as a target position for the pulled vertex during subse-
quent dragging. The system computes the displacement di
in the local coordinate frame on the projected plane from

Figure 17. (a) Creation of a part. The system projects the input stroke
to a working plane and cuts the base mesh with either an elliptic
curve or a line (b). The 3D geometry is constructed by creating a
mesh between the projected stroke and the base curves (c).

(a) (b) (c)

Figure 18. Pulling a vertex on a seam line.

ui
1ui

0

hi

ni

december 2009 | vol. 52 | no. 12 | communications of the acm 87

they enjoyed the process. These toys were their own cre-
ations and one-of-a-kind designs. Participants also gave us
valuable feedback for future improvement. They wanted to
have some auxiliary functions such as the ability to design
symmetric parts and remove existing parts, but no one
complained about the quality of the visual simulation. A
perfectly accurate simulation is not necessary because
many small variations inevitably occur during the real sew-
ing and stuffing process.

7. CONCLUSION
We introduced a plush-toy design system as an example of
our efforts to make CAD and CAE accessible to end users.
The system allows the user to design a plush toy quickly and
simply by combining simple sketching operations. The user
draws the desired silhouette on the canvas, and the system
automatically generates a 3D plush-toy model and a 2D cloth
pattern. The system runs a simple physical simulation in the
background so that the resulting 3D model is always a good
estimate of the final sewn result. The user can construct a
real plush toy by printing the pattern and sewing the result-
ing pieces together.

To demonstrate the effectiveness of the approach
even further, we also developed a system for the design of
knitted toys.13 A knitted toy is a toy made of knitted yarn
instead of cloth patches. One can construct a knitted
toy by knitting according to a specific knitting pattern,
but it is difficult to produce an appropriate knitting pat-
tern for a desired 3D shape. The Knitty system allows the
user to design an original knitted toy by simply drawing the
desired silhouette (Figure 22). The system then generates a
3D knitted animal model and corresponding knitting dia-
gram. We ran a workshop using this system and observed
that children could use it to design their own knitted
animals.

Interactive 3D modeling assisted by concurrent physi-
cal simulation can be a powerful tool in many other
application domains. For example, if one could run an
aerodynamic simulation during the interactive design
of a paper airplane model, the entire geometry could be
adjusted in an intelligent manner in response to the user’s
simple deformation operations to produce a model that
could actually fly. This kind of interaction would make it
easier for designers to pursue aesthetic goals while satis-
fying engineering constraints. Real-time simulation does
require high-performance computing resources, but some
meaningful support should be possible by carefully limit-
ing the target task and designing appropriate interfaces as
shown in this paper. We hope that our work inspires more
work in this direction.	

children, approximately 10–14 years old, joined the work-
shop accompanied by their parents. We gave a brief tuto-
rial at the beginning and had them design their own plush
toys using the system. It took about an hour for the design.
They then printed the designed pattern and sewed a real
toy in ~3 h. Figure 21 shows a couple of plush toys created
in the workshop. Participants quickly learned how to use
the system and successfully designed the 3D models they
wanted, with some help from volunteers. Furthermore,

Figure 19. A plush toy and a balloon designed in our system.

Figure 20. Example of texture changed. These models have many
thin parts.

Figure 21. Example of original plush toys designed and created by
children in the workshop.

Figure 22. Knitty system allows the user to design an original knitted
toy by simply drawing the desired silhouette.

88 communications of the acm | december 2009 | vol. 52 | no. 12

research highlights

	 1.	 Agrawala, M., Doantam, P., Heiser, J.,
Haymaker, J., Klingner, J., Hanrahan,
P., Tversky, B. Designing effective
step-by-step assembly instructions.
ACM Trans. Graph. (In Proceedings
of SIGGRAPH 2003), 22, 3 (2003),
828–837.

	 2.	 Alexe, A., Barthe, L., Cani, M.,
Gaildrat, V. Shape modeling by
sketching using convolution surfaces.
In Proceedings of Pacific Graphics
2005 (2005).

	 3.	 Bradley, D., Popa, T., Sheffer, A.,
Heidrich, W., Boubekeur, T. Markerless
garment capture. ACM Trans. Comp.
Graph. (In Proceedings of SIGGRAPH
2008), 27, 3 (2007), 99.

	 4.	 Breen, D.E., House, D.H., Wozny,
M.J. Predicting the drape of woven
cloth using interacting particles.
In Proceedings of SIGGRAPH 1994
(1994), 365–372.

	 5.	 Choi, K.-J., Ko, H.-S. Stable but
responsive cloth. ACM Trans. Graph.
(In Proceedings of SIGGRAPH 2002),
21, 3 (2002), 81–97.

	 6.	 Decaudin, P., Julius, D., Wither, J.,
Boissieux, L., Sheffer, A., Cani, M.-P.
Virtual garments: A fully geometric
approach for clothing design. Comp.
Graph. Forum. (In Eurographics
2006 Proceedings), 25, 3 (2006),
625–634.

	 7.	 Desbrun, M., Schroder, P., Barr, A.
Interactive animation of structured
deformable objects. In Proceedings
of Graphics Interface 1999 (1999),
1–8.

	 8.	 Grinspun, E., Krisl, P., Schroder, P.
CHARMS: A simple framework for
adaptive simulation. ACM Trans.
Graph. 21, 3 (2002), 281–290.

	 9.	I garashi, T., Hughes, J.F. A
suggestive interface for 3D drawing.
14th Annual Symposium on User
Interface Software and Technology.
(In ACM UIST 2001) (2001),
173–181.

	10.	I garashi, T., Hughes, J.F. Clothing
manipulation. 15th Annual
Symposium on User Interface
Software and Technology.
(In ACM UIST 2002) (2002), 91–100.

	11.	I garashi, T., Matsuoka, S., Tanaka,
H. Teddy: A sketching interface for
3D freeform design. ACM SIGGRAPH
1999 (1999), 409–416.

	12.	I garashi, T., Moscovich, T., Hughes,
J.F. As-rigid-as-possible shape
manipulation. ACM Trans. Comp.
Graph. (In ACM SIGGRAPH 2005),
24, 3 (2005), 1134–1141.

	13.	I garashi, Y., Igarashi, T., Suzuki,
H. Knitty: 3D Modeling of Knitted
Animals with a Production.
Eurographics 2008 Annex to the

Conference Proceedings (ISSN
1017–4656) (2008), 187–190.

	14.	 Julius, D., Kraevoy, V., Sheffer, A.
D-Charts: quasi developable mesh
segmentation. Comp. Graph. Forum.
(In Proceedings of Eurographics
2005), 24, 3 (2005), 981–990.

	15.	 Masry, M., Lipson, H. A sketch-
based interface for iterative
design and analysis of 3D objects.
In Proceedings of Eurographics
Workshop on Sketch-Based
Interfaces (2005), 109–118.

	16.	 Mitani, J., Suzuki, H. Making
papercraft toys from meshes using
strip-based approximate unfolding.
ACM Trans. Graph 23, 3 (2004),
259–263.

	17.	I garashi, Y., Igarashi, T. Pillow:
Interactive flattening of a 3D model
for plush toy design. Smart Graphics
2008. Lecture Notes in Computer
Science (LNCS) 5166, Springer-
Verlag, 1–7.

	18.	 Mori, Y., Igarashi, T. Plushie: An
interactive design system for
plush toys. ACM Trans. Graph. (In
Proceedings of SIGGRAPH 2007),
26, 3 (2007), 45.

	19.	 Nealen, A., Igarashi, T., Sorkine,
O., Alexa, M. FiberMesh: Designing
freeform surfaces with 3D curves,
ACM Trans. Comp. Graph. (In
Proceedings of SIGGRAPH 2007), 26,
3 (2007), 41.

	20.	 Owada, S., Nielsen, F., Nakazawa, K.,
Igarashi, T. A Sketching Interface
for Modeling the Internal Structures
of 3D Shapes, Smart Graphics 2003,
Lecture Notes in Computer Science
(LNCS) 2733, Springer-Verlag, 49–57.

	21.	 Schmidt, R., Wyvill, B., Sousa, M.C.,
Jorge., J.A. ShapeShop: Sketch-
based solid modeling with BlobTrees.
2nd Eurographics Workshop on
Sketch-Based Interfaces and
Modeling (2005), 53–62.

	22.	 Shatz, I., Tal, A., Leifman, G. Paper
craft models from meshes. The
Visual Computer. Int. J. Comp.
Graph. (In Proceedings of Pacific
Graphics 2006), 22, 9 (2006),
825–834.

	23.	 Sheffer, A., Levy, B., Mogilnitsky,
M., Bogomyakov, A. ABF++: Fast
and robust angle based flattening.
ACM Trans. Graph. 24, 2 (2005),
311–330.

Yuki Igarashi
The University of Tokyo

Takeo Igarashi
The University of Tokyo, JST/ERATO

References

© 2009 ACM 0001-0782/09/1200 $10.00

IST Austria
Call for Ph.D. Students
The Graduate School at IST Austria invites applicants from all countries to its Ph.D. program.
IST Austria is a new institute located near Vienna dedicated to basic research in the natural sci-
ences and related disciplines. The language of the Institute and the Graduate School is English.
The Ph.D. program combines advanced coursework and research, with a focus on Biology, Com-
puter Science, and interdisciplinary areas. IST Austria offers internationally competitive Ph.D. sala-
ries supporting 4-5 years of study. Applicants holding either a BS or MS degree are welcomed.

The Institute offers Ph.D. student positions with the following faculty:

Nick Barton Evolutionary Genetics, Mathematical Biology
Jonathan Bollback Evolutionary Genetics, Experimental Evolution
Krishnendu Chatterjee Computer-aided Verification, Game Theory
Herbert Edelsbrunner Algorithms, Computational Geometry and Topology
Calin Guet Systems and Synthetic Biology
Carl-Philipp Heisenberg Cell and Developmental Biology, Biophysics
Thomas A. Henzinger Computer-aided Verification, Concurrent and Embedded Systems

Additional faculty members will be announced on the IST website www.ist.ac.at | To apply online visit
www.ist.ac.at/gradschool | For enquiries, please contact gradschool@ist.ac.at | For students
wishing to enter the program in the fall of 2010, the deadline for applications is January 15, 2010.
IST Austria is committed to Equality and Diversity. In particular female applicants are encouraged to apply.

IST_Inserat_PHD-Students_ACM_177x121_RZ2.indd 1 13.10.09 12:05

