相関ルールを利用したSNSのコミュニティ分析

利光 由加子 (指導教員: 増永 良文)

1 はじめに

近年, ウェブで SNS (ソーシャルネットワーキングサイ ト)という友人・知人間のコミュニケーションを円滑にする 手段や場を提供したり「友人の友人」といったつながりを 通じて新たな人間関係を構築する場を提供するサービスが 増えてきている.このサービスの中で日本で最もユーザ数 が多いのが mixi[1] であり, 現在登録しているユーザは800 万人を超えているといわれている (2007年1月現在). この mixi にはコミュニティという趣味や嗜好,居住地域,出身 校などに関して掲げられたテーマに同調する者が集まる仕 組みがあり, その総数は 100 万以上ともいわれる. ユーザ はコミュニティに入ることによって自分の興味や関心事を主 張でき、その中でいろいろな情報交換や自分と嗜好が似た 人を見つけたりもできるのである.そこで本研究ではこの コミュニティを利用することで自分が興味のある分野の情 報を集めたり,同じような嗜好の人の動向を知ることがで きることを期待し,データマイニングで知られる相関ルー ルと mixi のコミュニティを利用してコミュニティ内での傾 向分析を行うことにした.

2 相関ルール抽出

2.1 データマイニング

コミュニティ分析のためにデータマイニング技術の代表的なものである相関ルールを利用する.データマイニングとは巨大なデータの集合やデータベースからパターンや規則を探し出す技術であり,それにより得た情報を,販売戦略や,商品企画など,実世界の身近なところに生かすことが期待されている.

2.2 相関ルール抽出法

2.2.1 相関ルールとは 相関ルールとは「パンを購入する人の多くはミルクも購入する」というような規則であり、パンをX, ミルクをYとした時X Yと記述される.以下にルール抽出に必要なサポート度と確信度の説明をする.

 $I=i1,i2,\ldots,iN$ をアイテム全体の集合とし,D をトランザクション集合データベースとする.あるアイテムセット X について,D の内の s %のトランザクションが X を含むとき,アイテムセット X は s のサポート度(support)を持つという.また,相関ルール X Y については,アイテムセット X Y のサポート度を相関ルール X Y のサポート度と定義する.相関ルール X Y について,X を含むトランザクションの内の c %のトランザクションが Y も含むとき,相関ルール X Y は c の確信度(confidence)を持つという.

2.2.2 FP-growth 法 従来, サポート度の閾値である 最小サポート度以上を満たすアイテム集合である頻出アイ

テム集合を求め,相関ルール抽出するのにアプリオリアルゴリズム [2] というアルゴリズムが使われてきたが,これは計算量が多く効率が悪い.そこで本研究では FP-growth アルゴリズム [3] を利用して相関ルールを抽出することにした.FP-growth 法は特殊なデータ構造である FP-tree を参照するだけで全ての頻出パターンを数え上げることができ,検索コストを大幅に減らすことができる.

図 1 の例を使って FP-tree 作成法を説明する.図 1 の左上の表は 9 つのトランザクションが入ったデータベースを表している.これが客の購買データを表しているとすると $T100\sim T900$ のトランザクションは客の購買,アイテム ID は商品をそれぞれ表しており,一行目のトランザクション T100 はある客が商品 I1,I2,I5 を購入していることを表している.

< FP-tree 作成法 >

データベースをスキャンし,それらのサポート数(頻 出度)を引き出し,サポート度の降順で分類してリスト, L=[I2:7,I1:6,I3:6,I4:2,I5:2] を作り,図1の左下の図の nodelink を作る.次に、null で表記される木の根を作り,デー タベース D をスキャンする. 各々のトランザクションの中 のアイテムは L 順の中で処理され,木はそれぞれのトラン ザクションから作られる. 例えば第1のトランザクション "T100:I1, I2, I5"はLの中の(I2,I1,I5)の3つのアイテ ムを含み、 (I2:1),(I1:1),(I5:1) の 3 つのノードで tree の 最初の枝の構造を導く,このノード I2 は根の子として関連 づけられ I1 は I2 と関連づけられ, I5 は I2 と関連づけられ る.このようにトランザクション中のアイテムを順番にいれ て図 1 の右のような tree を作る. 枝がトランザクションの ために付け加えられると,共通の先頭に沿った各々のノード の数は1増加させられ,先頭の後のアイテムのためのノー ドはそれに応じて作られる.木の走査を容易にするめ、各々 のアイテムは node-links を経て木で発生をする.このよう にして木を作ることによりデータベースで頻出パターンを マイニングする問題は FP-tree をマイニングする問題に置 き変えられる.

< FP-tree のマイニング (最小サポート=2) >

FP-tree をマイニングすることにより表 1 に示すような 頻出パターンが生成される . 頻出アイテム集合の作り方としてここではれ例として I5 を考える . I5 は図 1 の FP-tree の 2 つの枝で発生する (I5 の発生は node-links の連鎖によって容易に見つけられることができる .) これらの枝によって作られたパスは (I2 I1 I5:1) と (I2 I1 I3 I5:1) である . したがって , 末尾として I5 を考えると , 対応する 2 つの先頭パス (I2 I1:1) と (I2 I1 I3:1) で , それが表 1 の条件つきパターンベースを作る . ここで後ろの数字 (ここでは 1)はパターンベースのサポート度を示している . この条件付きパターンベースから条件付 FP-tree を生成する . 例の場合 < I2.I1.I3 > のサポート度 1 は最小サポート度 2 よりも

Community Analysis of SNS using Association Rules by Yukako TOSHIMITSU

トランザクション集合データベース

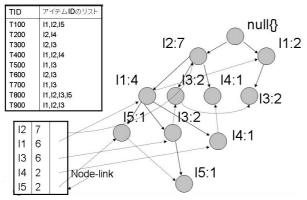


図 1: データベースのトランザクションを tree に入れ たときの様子

小さいため I3 は含まれず条件付 FP-tree は < I2:2,I1:2 > と なる.これから頻出パターンを生成すると,シングルパス全 ての頻出パターンの組み合わせは I2 I5:2,I1 I5:2,I2 I1 I5:2 となる.よってこれからできる相関ルールは I2 ポート度=2/9, 確信度=2/7)I1 I5(サポート度=2/9 確信 度=2/6=1/3) I2,I1 I5(サポート度=2/9 確信度=2/4)I2

I1,I5(サポート度=1/2 確信度=2/9=2/7) となり,この ようにして頻出アイテム集合を Node-link の降順で生成し ていく. 表<u>1</u>

アイテムごとの頻出パターンの生成

アイテム	条件付きパターンベース	条件付き FP-tree	頻出バターン生成
15	(I2 I1:1),(I2 I1 I3:1)	<i2:2,i1:2></i2:2,i1:2>	I2I5:2,I1I5:2,I2I1I5:2
14	(I2 I1:1),(I2:1)	<12:2>	I2I4:2
13	(I2 I1:2),(I2:2),(I1:2)	<i2:4,i1:2><i1:2></i1:2></i2:4,i1:2>	I2I3:4,I1I3:4,I2I1I3:2
I1	(12:4)	<12:4>	I2I1:4

実装と検証 3

データの収集では mixi に簡単にアクセスするためのモ ジュールである WWW::Mixi モジュールを利用して mixi サーバからユーザ ID とコミュニティID を抽出し, MySQL を利用してデータベースに格納した.データを収集する際に 手法 1. ランダムにユーザを 1000 人選んでそのユーザが 入っているコミュニティの ID を集める

手法 2. あるコミュニティを基点にそのコミュニティに 入っているユーザを集め、それぞれのユーザが入っている コミュニティを集める.

以上2つの手法で収集したデータを使い,FP-treeのプロ グラムを C 言語で作成して実際にマイニングを行った. 結 果を表 2 と表 3 に示す.

表 2 手法 1 と 2 でとったデータ数と 最小サポートごとに得られる相関ルールの数

	手 法 1	お茶大	大分市	cancam 好き	Disney マニア	Disney 嫌い
ユーザ数	1000	1311	1209	1912	1635	1388
コミュニティ数	18538	34887	31385	38340	43591	79086
support=15	0	33	49	373	203	189
support=20	0	12	27	221	137	42
support=25	0	4	14	182	82	30
support=30	0	1	9	125	69	8

表 3(コミュニティごとの代表的な相関ルール)

$\mathcal{K}_{0}(1 - 1 - 1) \cap \mathcal{K}_{0}(1 - 1) \cap \mathcal{K}_{0}(1 - 1)$				
コミュニティ名	相関ルール	サポート	確信度	
		度		
お茶大	空を見る人 星空好き	3.5 %	34.8 %	
	よく物をなくす 期限ギリギリまで行動できない	3.8 %	32 %	
大分市	よだきぃを標準語にする会 大分弁を話そう	3.0 %	62.5 %	
	大分県のラーメン 大分トリニータ	8.3 %	24.8 %	
cancam	物欲が止まらない いい女になる秘訣	11.7 %	30.3 %	
	ラブワンピ スカート好きなんだもん	6.5 %	60.0 %	
Disney	Disney 最新耳より情報	13.9 %	39.9 %	
マニア	TOKYO Disney RESORT			
	東京ディズニーランド 東京ディズニーシー	5.3 %	67.0 %	
Disney 嫌	フォント Photoshop	5.3 %	43.2 %	
L1				
	笑える画像 資料になりそうなウェブサイト	6 %	37.3 %	

表2は手法1と手法2で使ったコミュニティごとでのデー タ収集で得られたユーザ数,ユーザの入っているコミュニ ティの総数,最小サポートを X 人とした時にそれぞれ抽出 できたルールの数を示している. 例えばお茶大の結果を例と するとユーザ数が 1311 人でありそのユーザは全部で 34887 種類のコミュニティに入っており、サポート値が15人の場 合は33通り,20人の場合12通り,25人の場合は4通り,30 人の場合は1通りの相関ルールが抽出されたことを表して いる.また表3は手法2で実際に抽出できた相関ルールと そのサポート度と確信度を表している.例として表の一番 上の段で説明すると「空を見る人」と「星空が好き」の両 方のコミュニティに入っている人は「お茶大」コミュニティ に入っている人のうちの 3.5 %であり「空を見る人」のうち の 34.8 %は「星空が好き」のコミュニティに入っている ことを表している.

データをランダムに選ぶ場合, サポートの値を 10 まで小 さくしないとルールを抽出することができなかったが、コ ミュニティごとに選ぶとコミュニティの特徴を反映するルー ルを得ることができた.また選ぶコミュニティによって得 られるルールの数や性質に違いがみられた.地域や大学で 選ぶよりも趣味や嗜好に沿ったコミュニティのほうがより 多くの有益なルールを得ることができた、これは趣味や嗜 好で選んだコミュニティに集まっているユーザはそれをも とに他のコミュニティに入るが,地域や学校で選んだコミュ ニティに集まっているユーザははその他のコミュニティを選 ぶときにはそれぞれ個人の趣味や嗜好で選んでいるからだ といえる.

まとめと今後の課題

本研究では相関ルールを利用して mixi のコミュニティに よる傾向分析を行った、コミュニティごとにデータを集め て相関ルールを抽出するとそのコミュニティに入っている 人の傾向を分析することができた.またその傾向分析は趣 味や嗜好に偏ったコミュニティで行うほどコミュニティの特 徴が大きく現れ有益なルールが得られた.この分析は社会 科学にも役立てることができるのではないかと思う.今後 は社会科学における活用についても考えていきたい.

[謝辞]

本研究を進めるにあたりご助言・ご指導いただいた本学 情報科学科講師の渡辺知恵美先生に深く感謝致します.

参考文献

- [1] mixi, http://mixi.co.jp/
- [2] R.Agrawal and R.Srikant. "Fast algorithms for mining association rules." In proceedigs of VLDB 1994, pp. 487–499, Santiago, Chile, Sept. 1994.
- [3] J.Han, J.Pei, and P.S.Yu, "Mining Frequent Ptterns without Candidate Generation," In Proceedings of the SIGMOD Conference 2000, pp. 1-12,2000.