
Development of Advanced Edge Computing
Framework using Rich Client Devices

Masato Oguchi
Department of Information Sciences

Ochanomizu University
Tokyo, Japan

oguchi@is.ocha.ac.jp

Saneyasu Yamaguchi
Faculty of Informatics

Kogakuin University
Tokyo, Japan

sane@cc.kogakuin.ac.jp

Abstract—An idea of edge computing becomes popular as the
data can be processed in the vicinity of client IoT devices. Since
the performance of client devices is not high, they only collect
the data and send them to the edge server to process. Due to
the data transfer cost and privacy matters, it is desirable to
analyze the data within the client device as much as possible.
Thus, we focus on a smartphone that is a typical and very popular
rich client device. Performance of some types of smartphone
is surprisingly high, and it is advanced greatly year by year.
In this paper, we propose a framework to analyze data and
make use of them inside the Android terminal. Since we already
have investigated into the development of elaborative software
executed inside Android kernel, and we also have investigated
into the deep learning analysis using data obtained from Android
terminal, the proposed framework can be realized by utilizing
the result of such research works.

Index Terms—edge computing, rich client, IoT device, Android
kernel, deep learning

I. INTRODUCTION

As client IoT devices such as sensors and cameras are
connected to the cloud, the collected data are transferred to
the cloud, and interesting information can be obtained by
analyzing the data using machine learning techniques. Even
if the devices are connected with a high-speed network, the
data transfer cost is not negligible. In addition, passing raw
data to the server might cause privacy problems.

Therefore, the idea of edge computing has become popular
because the data can be processed in the vicinity of client
devices, which is shown in Figure 1. Since the performance of
client IoT devices such as wireless sensors is not high (which
is called thin client devices), they only collect data and send
those data to the edge server to analyze. Thus, the framework
still presents data transfer costs and privacy problems. Man-
agement of the edge servers also matters because they are
distributed, making management difficult compared to that of
a centralized cloud server. For these reasons, a framework of
rich client devices is desired, in which advanced data analysis
can be executed before sending to edge/cloud servers.

We focus on smartphones, which are typical and very
popular rich client devices. The performance of some types
of smartphones is surprisingly high and is improved greatly
year by year. Above all, these devices are currently carried

Cloud / Data Center

Edge Server

Wireless Sensors:

Thin Client Devices

Fig. 1. Edge Computing Environment

around by users regularly. Thus, an advanced edge computing
environment can be considered with smartphones as rich client
devices, which is shown in Figure 2. Smartphones have a
wide variety of sensors and collect data with them. If the data
can be analyzed inside the smartphone and only the obtained
information is sent to servers or utilized within the smartphone,
the problem of data transfer cost and privacy matters can be
solved.

In this regard, however, the smartphone is not an exper-
imental terminal but a practical one, and therefore, their
structure is more complicated than that of simple sensors. A
strong security mechanism is also established. As a result, it
requires a certain technique and know-how if we try to develop
an advanced computing environment inside the smartphone,
which is much harder than the development of ordinary user
applications.

Fortunately, we have experience developing computing
mechanisms inside the Android kernel. In addition, machine
learning mechanisms that can be executed on a smartphone
such as TensorFlow Lite have been released recently.

978-1-7281-5320-9/20/$31.00©2020 IEEE

Fig. 2. Advanced Edge Computing Environment with Smartphones

Thus, we are developing a framework of advanced com-
puting mechanism on an Android smartphone, in which data
are captured and processed inside the device. We can retrieve
data even from inside the kernel, process the data using a
machine learning model, and control the system based on the
information obtained by this process. We show the design of
such a scenario.

The remainder of this paper is organized as follows. Section
II explains the Android hardware and software environment. A
recent machine learning framework for mobile devices is intro-
duced in Section III. The research outcomes of Kernel Monitor
and middleware are summarized in Section IV. Section V
shows the parameter control mechanism based on machine
learning. Some security issues are discussed in Section VI.
Section VII introduces some related work, and Section VIII
presents a conclusion and future direction of this research.

II. ANDROID TERMINAL

A. Android hardware environment

Previously, the smartphone was a poor-performing device
compared with ordinary computers, even with portable laptops,
not to mention servers. Currently, the performance of a low-
end model smartphone is still poor. However, high-end models
are different; they have amazingly high performance. The
specifications of very recent models are almost comparable
with those of ordinary laptop PCs.

Table I shows the performance of Google Pixel 3 released
in October 2018 and Google Pixel 3a released in May 2019,
respectively. A Qualcomm Snapdragon SoC is used with an
Adreno GPU.

The performance of these devices is surprisingly high: The
score of Snapdragon 845 on Google Pixel 3, measured by
Geekbench 5, is 469 as a single-core device and 1815 as a
multi-core device, while the baseline score using the Intel Core
i3-8100 is 1000 [1].

TABLE I
SPECIFICATION OF GOOGLE PIXEL 3 AND 3A

Pixel 3 Pixel 3a
CPU Snapdragon 845 SDM845 Snapdragon 670 SDM670

(4 ｘ 2.5 GHz ＋ 4 ｘ 1.6 GHz) (4 ｘ 2.0 GHz ＋ 4 ｘ 1.7 GHz)
GPU Adreno 630 Adreno 615

Storage 64 GB 64 GB/128 GB
RAM 4 GB LPDDR4X 4 GB LPDDR4X

Battery 2915 mAh 3000 mAh
Monitor 5.5 inch 5.6 inch

(2160x1080 px) (2220x1080 px)
Wi-Fi IEEE 802.11 a/b/g/n/ac IEEE 802.11 a/b/g/n/ac

B. Android software environment

Android OS is a platform for mobile terminals whose
development is led by Google, and it is distributed as a
package that includes an operating system, middleware and
a set of applications. It is the largest installed base of any
operating system, with over two billion monthly active users.

The source code of Android is available via the Android
Open Source Project (AOSP) by the Open Handset Alliance.
The standard code of Android is developed by AOSP [2].
This code is customized for particular hardware by adding
unique code suitable for particular chipsets and devices. We
have downloaded and compiled the Android kernel, which is
developed based on Linux, as well as the Android userland.
The built image data are copied to the Android terminal, which
can be booted with the original image data.

III. MACHINE LEARNING ON SMARTPHONES

A. Deep Learning Framework

Deep learning is a neural network technique that is widely
used for the analysis of images or videos. Deep learning
refers to a machine learning scheme that relies on a neural
network with many intermediate layers. A neural network
is an information system that imitates the structure of the
human cerebral cortex. Deep learning makes it possible to
automatically extract features from data. Several deep learning
frameworks have been developed so far, such as Caffe [3],
TensorFlow [4], and Chainer [5].

B. TensorFlow Lite

TensorFlow Lite is a toolkit based on TensorFlow, a machine
learning framework developed by Google, that is suitable for a
mobile environment [6]. It converts a trained model from Ten-
sorFlow for a mobile environment, which requires decreasing
the size of the model. The architecture of TensorFlow Lite is
shown in Figure 3.

TensorFlow Lite consists of two components: the Tensor-
Flow Lite converter and the TensorFlow Lite interpreter. An
original TensorFlow model is converted into an efficient form
that is suitable for lightweight devices such as a smartphone,
and the converted model is executed on a TensorFlow Lite
interpreter, which runs on the smartphone.

Fig. 3. Architecture of TensorFlow Lite [6]

IV. KERNEL MONITOR AND MIDDLEWARE

A. Kernel Monitor

We have developed a method to observe the behavior of
parameters inside the Linux kernel code. The Kernel Monitor
is a system tool that can observe the behavior of parameters in-
side the Linux kernel code, which is generally never observed
from outside of the kernel. Our previous work successfully
embedded it in the Android platform in order to analyze the
connection status of a mobile host in real time [7].

Fig. 4. Kernel Monitor observing TCP parameters

As shown in Figure 4, Kernel Monitor allows users to
monitor parameters in the kernel processing at the mobile
host, which include the congestion window (CWND), RTT,
and timing of errors. The parameters are defined in the TCP
implementation of the Linux kernel code, and applications in
the user space can generally never observe or even recognize
them. By means of Kernel Monitor, it is possible to access
the current values of these parameters in the kernel memory
space.

B. Kernel Parameter Controlling Middleware

In our previous work, kernel parameters controlling mid-
dleware were also developed [8] [9] [10]. The middleware
controls CWND if the terminal originates TCP traffic and is
connected to the server via a WLAN to address congestion
among the AP and other Android terminals.

The middleware can be divided into two parts, as shown
in Fig. 5. One part adjusts the congestion control, using the
process interface to prevent segments from overflowing and

Fig. 5. Kernel Parameter Controlling Middleware

Fig. 6. Total Throughput as the Number of Terminals Changed

saturating the bandwidth. The notification is broadcast by UDP
every 0.3 seconds from the other part because the kernel
parameters frequently change. The adjustment is executed
every 10 seconds because the number of mobile hosts changes
less often, and this lower frequency is enough to collect
information from all hosts, considering the notification interval
and the arrival rate of notifications.

C. An Effect of System Control by Middleware

In this subsection, an effect of system control middleware
is introduced. In this experiment, packets are transferred from
6 Android terminals connected to an access point to a server
using iPerf [11]. An artificial delay of 512 milliseconds is
inserted between the access point and the server to emulate
the cloud server environment. As Android terminals, Nexus 5
and Nexus 7 smartphones were used.

The total throughput of the terminals is shown in Figure
6. As the number of terminals increases beyond 3 nodes, the
total throughput decreases due to the traffic congestion at the
access point.

By introducing the kernel parameter controlling middleware
mentioned in the previous subsection, TCP parameters inside
the kernel such as CWND can be controlled based on the
observed traffic condition. The evaluation results are shown
in Figures 7 and 8 when 6 terminals send packets to a server
simultaneously. Not only does the total throughput increase
but also the fairness of transmission among the terminals is
increased by the middleware.

Fig. 7. Total Throughput and Fairness (Nexus 5)

Fig. 8. Total Throughput and Fairness (Nexus 7)

D. Implementation into the Latest Smartphone

In our previous works, the Kernel Monitor and middleware
are implemented in smartphones such as Google Nexus S
[9] and Nexus 5 and 7 [10]. Compared with these devices,
the latest smartphones have greater performance, as shown in
Section II. The Android firmware versions are also different:
ver. 4.1.1 for Nexus S, ver. 5.1.1 for Nexus 5, ver. 6.0.0 for
Nexus 7, and currently, ver. 9.0.0 for Pixel 3/3a.

Such differences require a technique and know-how for the
implementation of elaborate software. We have implemented
the Kernel Monitor and the middleware into Pixel 3a success-
fully.

V. PARAMETER CONTROL MECHANISM BASED ON
MACHINE LEARNING

A. An Overview of the Proposed Framework

As shown in Section IV, we have established a mechanism
that can acquire data from Android terminal, including param-
eters inside the kernel. The obtained data can be injected into
TensorFlow Lite for analysis, and the behavior of the system
can be predicted as a result. It should be used to control the
system through the middleware introduced in Section IV.

Thus, we can establish a system that acquires parameters
when the Android terminal is used, executes a machine learn-
ing process based on them, and sends back the result to control

the system. For example, TCP parameters are obtained from
Android kernel in real time and analyzed using a deep learning
model on TensorFlow Lite, and the behavior of network traffic
is predicted in order to control the packet transfer to avoid
congestion. The proposed framework is described in Figure 9.

Fig. 9. An Overview of the Proposed Framework

To complete the implementation of the proposed framework,
we need to convert a model of deep learning analysis to Ten-
sorFlow Lite Flatbuffer. For that purpose, we have investigated
the deep learning analysis using data of the Android terminal.
This is explained in the next subsection.

B. Deep Learning based on Data Collected on the Android
Terminal

To realize the scenario described in the previous subsection,
we require a model that predicts the behavior of network traffic
using parameters of packets. We have already researched the
deep learning model based on LSTM, a type of recurrent
neural network (RNN) model, using parameters of captured
packets of Wireless LAN to predict the congestion of the
network [12].

Android terminal

Obtain

 parameters

 throughput

 RTT

Capture packets

Fig. 10. Experiment Environment to Analyze Android Data

The experimental environment to analyze Android data is
shown in Figure 10. Packets are transferred from multiple

Android terminals connected to an access point to a server
using iPerf. On the Android terminals, parameters inside the
kernel, throughput, and RTT values are obtained. In addition,
AirPcap [13] (Riverbed Company) is used to capture the
transferred packets. AirPcap is a USB-based adapter that
captures 802.11 wireless traffic for analysis. These data are
analyzed by LSTM to build a model of deep learning.

In this experiment, 6 Android terminals of Nexus S and
Nexus 7 are used. First, 70 seconds of a dataset is created
for the learning phase, in which packets are sent for only 30
seconds between 20 and 50 seconds by all Android terminals.
Next, 50 seconds of a dataset is created for the validation
phase, in which packets are sent for only 20 seconds between
10 and 30 seconds by all Android terminals. For the validation,
the throughput of t+1 seconds is predicted using the dataset
obtained until t seconds.

The learning dataset is analyzed by LSTM to build a model.
Figure 11 shows a learning dataset and prediction result in
which the learning data are put again into the learning model
made by the data. According to this figure, the learning model
is well trained for this type of network traffic.

Fig. 11. Prediction Result using the Learning Dataset

Next, the validation dataset is analyzed to evaluate the
accuracy of the prediction. The result is shown in Figure 12.

According to this figure, although accurate throughput
values cannot be predicted, the timing at which the value
increases and the timing at which it decreases can be predicted.
Since the timing of sending packets and the time of the
data sent are different from those of the learning data, it is
considered that this type of network traffic can be generalized.

Currently, the prediction ability is limited to some types of
network traffic since the learning dataset is not large enough.
We are developing an experiment by utilizing a much larger
volume of data to build a more generalized learning model.
The model should be converted to TensorFlow Lite Flatbuffer,
which is implemented in the Android terminal, and should
perform deep learning analysis, as described in the proposed
framework shown in the previous subsection.

Fig. 12. Prediction Result using the Validation Dataset

VI. SECURITY ISSUES

If the collected data is processed and used only within a
smartphone, no security issue by eavesdropping is concerned.
However, when such data and/or the retrieved information are
transmitted to servers or other terminals, we must care about
its security.

Among various encryption methods, we are focusing on
Fully Homomorphic Encryption (FHE) which allows us to
process data while they are encrypted [14] [15]. With the
feature, it is possible to share data in safety between a terminal
and a server or among terminals. The defect of FHE is that
it requires huge volume of calculation for encryption and
decryption. Therefore, only processing on a high-performance
server machine is discussed so far.

However, as mentioned in Section II, the latest smartphone
has greater performance. Thus, using FHE on smartphone
may not be necessarily impossible anymore. In our experiment
using HElib [16], one of FHE libraries, the key generation of
FHE using Google Pixel 3 is about 1.7 times slower compared
with the case using laptop PC that has 1.3GHz Intel Core CPU,
perhaps because the laptop PC has much volume of memory
than the Pixel 3. However, the encryption time is almost
comparable in both cases. As the performance of smartphones
increases, using FHE should become reasonable to share data
in safety even for smartphones.

VII. RELATED WORK

Edge computing has recently attracted attention from vari-
ous viewpoints. Various distributed processing methods using
edge computing are proposed to analyze data obtained from
IoT devices. For example, a data analysis method for IoT
devices using deep learning is described in [17]. A deep
learning application for the IoT devices is built using edge
computing since the processing capacity of an IoT device is
limited, and an offload strategy for performance optimization
is designed and evaluated. A hierarchical distributed fog
computing architecture is proposed, which supports massive

infrastructure integration for future smart cities [18]. The
models and architectures of typical fog computing systems are
investigated in [19]. The design space for the four dimensions
of system, data, human, and optimization are analyzed.

In those works, IoT devices are assumed to be thin clients
with poor computing resources. Data obtained from client
devices are transferred to edge/fog servers in the vicinity of
the devices and analyzed by deep learning methods. In our
research, client devices are assumed to be rich clients that
have relatively powerful computing resources. It is possible to
analyze the data inside the client devices, and only the result
of deep learning might be transferred to edge servers and/or
cloud servers.

VIII. CONCLUSIONS

In this paper, we have discussed the advancement of edge
computing and focused on a smartphone, which is a typical
and very popular rich client device. The performance of some
types of smartphones is surprisingly high and is improved
greatly year by year.

We have proposed a framework to analyze data and make
use of it inside the Android terminal. Since we have already
investigated the development of elaborate software executed
inside the Android kernel and have also investigated the deep
learning analysis using data obtained from the Android termi-
nal, the proposed framework should be realized by utilizing
the result of this work.

ACKNOWLEDGMENT

This work was partly supported by JST CREST Grant
Number JPMJCR1503, Japan.

REFERENCES

[1] Google Pixel 3 Benchmarks. Retrieved September 6, 2019 from
https://browser.geekbench.com/android devices/835

[2] Android open source project. Retrieved September 6, 2019 from
http://source.android.com

[3] Y. Jia et al.,“Caffe: Convolutional architecture for fast feature embed-
ding,”arXiv preprint arXiv:1408.5093, 2014.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M.
Kudlur, J. Levenberg, D. Man, R. Monga, S. Moore, D. Murray, C.
Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vigas, O. Vinyals, P.
Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,“ Tensor-
Flow: Large-scale machine learning on heterogeneous systems,”2015.
http://download.tensorflow.org/ paper/whitepaper2015.pdf. pp. 1-19.

[5] S. Tokui, K. Oono, S. Hido, and J. Clayton,“Chainer: a nextgeneration
open source framework for deep learning,”In Proceedings of Workshop
on Machine Learning Systems (LearningSys) in The Twenty-ninth
Annual Conference on Neural Information Processing Systems (NIPS),
2015. 6 pages.

[6] TensorFlow Lite, Retrieved September 6, 2019 from
https://www.tensorflow.org/lite

[7] Kaori Miki, Saneyasu Yamaguchi, and Masato Oguchi, ”Kernel Monitor
of Transport Layer Developed for Android Working on Mobile Phone
Terminals,” In Proc. the Tenth International Conference on Networks
(ICN2011), pp.297-302, January 2011.

[8] Hiromi Hirai, Saneyasu Yamaguchi, and Masato Oguchi, ”A Proposal
on Cooperative Transmission Control Middleware on a Smartphone in
a WLAN Environment,” In Proc. the 9th IEEE International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob2013), pp. 710-717, October 2013.

[9] Ai Hayakawa, Saneyasu Yamaguchi, Masato Oguchi, ”Reducing the
TCP ACK Packet Backlog at the WLAN Access Point,” In Proc. the 9th
ACM International Conference on Ubiquitous Information Management
and Communication (IMCOM2015), 5-4, January 2015.

[10] Ayumi Shimada, Saneyasu Yamaguchi, and Masato Oguchi, ”Perfor-
mance Improvement of TCP Communication based on Cooperative
Congestion Control in Android Terminals,” In Proc. the 12th ACM
International Conference on Ubiquitous Information Management and
Communication (IMCOM2018), 3-2, January 2018.

[11] Iperf For Android Project in Distributed Systems, Retrieved September
6, 2019 from http://www.cs.technion.ac.il/ sakogan/DSL/2011/projects/
iperf/index.html

[12] Aoi Yamamoto, Haruka Osanai, Akihiro Nakao, Shu Yamamoto,
Saneyasu Yamaguchi, Takeshi Kamiyama, and Masato Oguchi, ”Pre-
diction of Traffic Congestion on Wired And Wireless Networks Us-
ing RNN,” In Proc. the 13th International Conference on Ubiquitous
Information Management and Communication (IMCOM2019), pp.3-2,
January 2019.

[13] Riverbed AirPcap, Retrieved September 6, 2019 from
https://support.riverbed.com/content/support/software/steelcentral-
npm/airpcap.html

[14] Yuri Yamamoto and Masato Oguchi, ”A Decentralized System of
Genome Secret Search Implemented with Fully Homomorphic Encryp-
tion,” In Proc. the 1st IEEE International Workshop on Big Data and
IoT Security in Smart Computing (BITS2017) in conjunction with
the 3rd IEEE International Conference on Smart Computing (SMART-
COMP2017), May 2017.

[15] Masato Oguchi, Kurt Rohloff and Yuki Yamada, ”Homomorphic Encryp-
tion for Privacy-Preserving Genome Sequences Search,” In Proc. the 3rd
IEEE International Workshop on Big Data and IoT Security in Smart
Computing (BITS2019) in conjunction with the 5th IEEE International
Conference on Smart Computing (SMARTCOMP2019), June 2019.

[16] HElib, Retrieved September 6, 2019 from
https://github.com/homenc/HElib

[17] He Li, Kaoru Ota, M. Dong, ”Learning IoT in Edge: Deep Learning for
the Internet of Things with Edge Computing,” IEEE Network, Vol.32,
No.1, pp.96-101, Janyary 2018.

[18] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, Q. Yang, ”A hierarchical
distributed fog computing architecture for big data analysis in smart
cities,” October 2015. DOI:10.1145/2818869.2818898, .

[19] S. Yang, ”IoT Stream Processing and Analytics in the Fog,” IEEE
Communications Magazine, Vol.55, No.8, pp.21-27, August 2017.
DOI:10.1109/MCOM.2017.1600840

