
Performance Evaluation of Transmission-Control
Middleware in WLAN and LTE networks

Ayumi Shimada, Masato Oguchi
Department of Information Sciences

Ochanomizu University
Tokyo, Japan

ayumi@ogl.is.ocha.ac.jp
oguchi@is.ocha.ac.jp

Saneyasu Yamaguchi
Kogakuin University

Tokyo, Japan
sane@cc.kogakuin.ac.jp

Heidi Kaartinen, Joni Jämsä
Centria Research and Development

Centria University of Applied Sciences
Ylivieska, Finland

heidi.kaartinen@centria.fi
joni.jamsa@centria.fi

Abstract—Since mobile terminals such as smartphones

are basic information tools for users, their communication
performance is always significant. Modern loss-based
Transmission Control Protocols (TCP) take aggressive
congestion window (CWND) control strategies in order to
gain better throughput, but such strategies may cause a
large number of packets to be backlogged and eventually
dropped at the entry point to the wireless access network.
This problem applies not only to the downstream TCP
sessions but also to the upstream TCP sessions when the
terminal is connected via a Wireless Local Area Network
(WLAN), which disregards the size of packets in its
scheduling. This paper focuses on the ACK packet backlog
problem with the upstream TCP sessions, and proposes a
CUBIC based CWND control mechanism as part of the
middleware for the Android terminals. It utilizes the
Round Trip Time (RTT) as an indication for the TCP
ACK backlog condition at the WLAN AP, and controls the
upper and lower bounds of its CWND size to suppress
excessive transmissions of own TCP DATA packets. An
experimental study with up to three Android terminals
shows that the proposed mechanism can improve both
aggregate throughput and fairness of the WLAN, and that
it is highly effective particularly for cases where very long
RTTs are observed.

Keywords—WLAN; LTE; TCP; CWND; RTT; congestion
control; Android

I. INTRODUCTION
As performance of terminals is improved and a bandwidth

of a network becomes higher, modern loss-based TCPs such as
BIC [1] and CUBIC [2] take aggressive CWND control
strategies in order to gain better throughput over other
competing TCP sessions. Although such strategies are suitable
for wired connections, they may cause a large number of
packets to be backlogged and eventually dropped at the entry
point to the wireless access network. This is because a wireless
link can usually offer much narrower bandwidth than its wired
backhaul and backbone networks. This problem applies not

only to the downstream TCP sessions but also to the upstream
TCP sessions when the terminal is connected via a WLAN,
which disregards the size of packets in its CSMA/CA [3] based
scheduling.

This problem depends on performance of terminals and
type of networks. Therefore, this paper focuses on the ACK
packet backlog problem with the upstream TCP sessions in
several environments, and proposes a CUBIC based CWND
control mechanism as part of the middleware that can be
implemented in the Android terminals. It utilizes the RTT as an
indication for the TCP ACK backlog condition at the WLAN
AP, and controls the upper and lower bounds of its CWND size
to suppress excessive transmissions of own TCP DATA
packets. An experimental study with up to three Android
terminals shows that the proposed mechanism can improve
both aggregate throughput and fairness of the WLAN, and that
it is highly effective particularly for cases where very long
RTTs are observed.

II. RELATED WORK
In the case of a wired network, TCP has originally assumed

that a packet drop is an indication of network congestion, since
the primary reason for a packet to be dropped is the queuing
overflow at one of the routers along the path to the other
communication peer. However, wireless communications
introduce other causes for packet drops such as fading,
collisions and interference, which confuse the TCP CWND
control algorithm to lead to suboptimal performance. Such
effects of wireless communications on the TCP performance as
well as techniques to combat those have been extensively
studied [4][5][6][7] in the literature.

We also have studied intensively about this problem in
various environments. Our previous work [8][9] is one of them,
in which each WLAN terminal attempts to estimate the number
of neighboring terminals that operate on the same channel by
monitoring broadcast activities, and adjusts its CWND size
accordingly to gain its fair share. Details of this work are
described in Section II C. This paper also presents the results of
the behavior of Android terminals in in Long Term Evolution
(LTE)-networks.

III. BACKGROUND

A. Android Operating System
This study focuses on the implementation of our proposed

mechanism as a middleware of the Android platform. Android
is a platform for mobile terminals whose development is led by
Google, and is distributed as a package that includes an
Operating System (OS) and basic applications. The source
code of Android is available via the Android Open Source
Project by the Open Handset Alliance [10]. Thus we can apply
our proposed method to any other Android terminals with
minor modification.

Please note that Android is built based on the Linux kernel,
which provides basic capabilities such as multistack
networking, multitasking, virtual-memory management and
virtual machines. Therefore, this work can be applied to any
other Linux based terminals or systems although the
performance evaluation has been conducted only with Android
terminals.

Since the default TCP version in Linux is CUBIC, Android
adopts CUBIC as the transport protocol. CUBIC, like any other
transport protocols, controls the rate of DATA packet
transmissions based on CWND, the maximum number of
packets that can be transmitted without receiving an ACK
packet from the DATA packet receiver. Setting an appropriate
CWND is the key to achieving high throughput, which is the
primary difference between various versions of TCP.

In CUBIC, CWND is increased gradually per receiving an
ACK and halved every time a packet loss is experienced as
shown in Fig. 1. As the CWND size is reduced upon a packet
loss, it is called a loss-based TCP. Other CWND control
mechanisms used in TCP Vegas and TCP Westwood are based
on the observed RTTs, and are called a delay-based TCP [11].
Cubic also has a unique feature that changes its CWND with
passing time, which is not seen in other loss-based TCP.

Fig. 1. Behavior of CUBIC TCP

Fig. 2. Kernel Monitoring Tool

B. Kernel monitoring tool
We have developed a method to observe a behavior of

parameters inside the Linux Kernel code. Our previous work
[12] successfully embedded a system tool called Kernel
Monitoring Tool in the Android platform in order to analyze
the connection status of a mobile host. As shown in Fig. 2, it
allows users to monitor parameters in the kernel processing at
the mobile host, which include CWND, RTT, and socket buffer
queue. They are defined in the TCP implementation of the
Linux Kernel code, and applications in the user space can
generally never observe or even recognize them. By means of
Kernel Monitoring Tool, our middleware can access the current
values of these parameters in the kernel memory space.

C. CWND-controlling middleware
This subsection describes the CWND-controlling

middleware that has been implemented in our previous work
[24]. The middleware controls CWND if the terminal
originates TCP traffic and is connected to the server via a
WLAN, in order to address congestion among the AP and other
Android terminals.

 The middleware can be divided into two parts, as shown in
Fig. 3. One part adjusts the congestion control, using the
process interface to prevent segments from overflowing and
filling the bandwidth. The notification is broadcast by User
Datagram Protocol (UDP) every 0.3 seconds from the other
part because the kernel parameters frequently change. The
adjustment is executed every 10 seconds because the number of
mobile hosts changes less often, and this lower frequency is
sufficient to collect information from all hosts, considering the

notification interval and the arrival rate of the notifications.

Fig. 3. Summary of the system

Fig. 4. Composition of the middleware after modification

Fig. 4 shows the composition of the middleware. The
values of RTT and minimum RTT (min_rtt) are acquired by
observing data from the kernel monitoring tool constantly. A
value of min-rtt is updated by overwriting with the smallest
RTT during the communication. Based on the acquired values,
RTT Ratio (ratio_rtt) is obtained with Equation 1, which
indicates increase and decrease of RTT. The behavior of the
middleware can be customized based on this value.

 (1)

(1)

Simultaneously, traffic condition is predicted by receiving
packets and knowing the communication situation of other
terminals. This system sets levels of upper and lower limit for
the CWND based on the RTT ratio and the number of
communication terminals using the proc interface, which is
controllable from an outside process of kernel and can be tuned
up for optimization. Using this method, the control system can
limit the quantity of traffic outbreak and share a bandwidth of a
terminal, after the initial communication is enabled by setting a
CWND level at an appropriate value.

The communication situation is checked approximately
every 0.5 seconds in the current implementation. CWND level
is modified when the middleware detects another terminal that
shares the same AP begins communication and the RTT values
suddenly increase as a result. With 0.5 seconds frequency, the
kernel monitoring tool can grasp the timely situation
moderately and optimize it. If the frequency is too high, it may
become an overhead.

Fig. 5. Environmental topology

(2)

In this middleware, we do not modify the congestion
control algorithm itself of the basic TCP, which functions
similar to the default case and should be good for the
interoperability. Nevertheless, the communication is optimized
by setting the levels of upper and lower limit for the CWND,
and the congestion control is adjusted based on the
communication situation of AP surroundings. In this paper, we
prove our method works well in various environments.
Particularly, it is possible to adapt our method to different
network environments, such as WLAN and LTE networks.

(3)

D. Equations for proposed control mechanism
In each delay environment, we decide the levels of upper

and lower limit for the CWND referring to Equations 2, 3 and 4
[13]. In these equations, the Bandwidth Delay Product (BDP) is
filled with data transferred by connections that are assigned the
divided bandwidth. The limit values are decided based on these
equations.

 (4)

IV. TESTING AT WLAN NETWORK
We evaluated the basic performance in WLAN network

with the experimental system in Figure 5. The client terminals
were connected to an AP over 802.11g, and the AP was
connected to the server host through the wired route. The client
terminals were Nexus 7. The number of terminals ranged from
1 to 7. To emulate network delay and packet loss, a network
emulator, Dummynet [14], was inserted between the AP and
the server host; 256 ms delay was set by assuming a high-delay
environment. In this environment, the wired parts are
connected with higher rate because of Gigabit Ethernet,
whereas a bandwidth is only about 20Mbps in the wireless
parts. Thus, the radio transmission sections between the AP and
the terminals were a bottleneck, which was a typical case when
mobile terminals access to a remote server through a wireless
network. Especially, when the number of the terminals
connected simultaneously increases, a buffer overflow may
occur in the AP and the length of the packet queue for
transmission increase. As a network benchmark tool, Iperf for
Android [15] was installed on all the terminals.

Fig. 6. Effect of the middleware

Fig. 6 shows the relationship between the number of
terminals and the total throughput. The blue and red lines show
the throughput without and with the middleware, respectively.
The blue line drops when the AP is overloaded, i.e. the number
of terminals exceeds five (5). In contrast, the red line does not
decrease with an advantageous effect of the middleware. The
performance with seven (7) terminals is improved by
approximately 1.25 times.

V. TESTING AT LTE NETWORKS
The testing environment at Centria enables a possibility to

test the effects of data traffic and congestion in a heterogeneous
network (HetNet). In its previous studies, Centria has been
working to evaluate and improve the performance of the
mobile network. Recently, Centria has concentrated on
evaluating the performance of active antenna system (AAS)
[16]. As a result it is seen that AAS provides a flexible
beamforming for changing situations in the network.
According to Centrias tests the AAS improves the throughputs
within the system and flexibly adds capacity to locations where
it is needed. However, AAS configuration is a challenge, as
tasks are performed in changing environment. Some lighter
solutions are required while AAS is developed to be fully
exploitable on tests and demonstrations.

Fig. 7. Drive test setting of AAS on the testing environment of Centria.

Fig. 8. Transmission of CWND and CA_STATE

As there are different kinds of LTE bands within the
Centria test environment (see Fig. 7), many types of
demonstrations can be performed with them. The setup of
WLAN (described in Section IV) was implemented on the
Centria’s test on LTE network environment. 2.1 GHz passive
antenna was used for testing with two Nexus 5 smartphones.
Nexus 5 was selected to be the terminal of the test because it
supports the used LTE bands. Both Nexus-terminals were
using Android OS. Iperf and the transmission control
middleware were installed in them. One of the phones was
used as a server and the other one was used as a client. As there
were only two terminals at use in this test, the LTE network
was congested by uploading packets to the network with a load
generator. On the first test round the throughput was tested
without any extra load on the network, where 71.5 Mbytes
were transferred within the test sequence of 60 seconds. The
average transfer speed was 9.99 Mbits/sec. In the second round
the test was executed the same way, but artificial load was
added to the network with uplink of a load generator with a
capacity of 10.1 Mbits/sec. During the second test round the
amount of transferred data was 40.2 Mbytes and the speed was
5.63 Mbits/sec.

As the tests were executed without the middleware on, the
amount of transferred data was 71.9 Mbytes and the speed 10
Mbits/sec and with generated load 41.8 Mbytes and 5.80
Mbits/sec. This indicates that the results of the tests in LTE
network differ from the results on the WLAN. In the cases with
the brief testing period, it was observed that the total size of
data transferred without the middleware was greater than that
with it. This is because the middleware was developed for
cases when the number of terminals connected concurrently to
the same AP is large. In other words, we can utilize the
middleware effectively with heavily crowded network. Hence,
we need to evaluate with a larger number of terminals to
observe the effect of middleware clearly. However, network
congestion can be observed in the network with uplink of load
generator (Fig 8). Also, a time transition of CA_STATE that
indicates the state of TCP acquired by the kernel monitoring
tool is shown in Fig 8. In these states:

• "0" means "Open": normal state

• "1" means "Disorder": replacement of packets

• "2" means "Congestion Window Reduced (CWR)":
congestion notice

• "3" means "Recovery": Fast Retransmission

• "4" means "Loss": Timeout and loss of Packets

The communication with artificial load has some errors and
congestion happens. It is considered that the middleware is
likely to achieve higher performance if a heavier network
burden is observed.

VI. CONCLUSIONS
This study has focused on the ACK packet backlog

problem with the upstream TCP sessions, and has proposed a
CUBIC based CWND control mechanism that utilizes the RTT
as an indication for the TCP ACK backlog condition at the
WLAN AP. It controls the upper and the lower bounds of its
CWND size to suppress excessive transmissions of own TCP
DATA packets. Moreover, we applied the environment of
WLAN (Section IV) to the Centria’s LTE network test (Section
V) and evaluated the transmitting performance of the Android
terminal.

The experimental study with up to seven (7) Nexus 7
terminals in WLAN network shows that the congestion control
middleware can improve the total throughput of the WLAN. In
particular, it improved the TCP throughput by a factor of 1.25
when many terminals are communicate through the same AP.

Continuing the analysis, we evaluated the performance in
LTE network. Then, we revealed that the experimental study
with the two terminals in LTE network did not properly
demonstrate the effect of the middleware, because it is believed
that the middleware is effective in the case of heavy network
burden such as when artificial delay is larger or when there is a
larger number of terminals communicate in the same network,
while such conditions were not present during aforementioned
experiment.

Solutions of cognitive infocommunications set a new kind
of demand for the networks and their capacity, as the amount
of communication between human and infocommunication
devices within the networks will increase. [17] In case of
congestion in the network, the reliability of the data transfer
must be improved. New solutions are to be developed and
implemented to meet this rapidly growing demand. Such
solutions as we have presented on this paper, will utilize the
maximum capacity available within the network and speed up
the data traffic.

 Centria will continue in collaboration with Ochanomizu
University testing smartphones in different networks. For our
future work, we will test the middleware with a large number
of smartphones and a server-PC to see the effect.

ACKNOWLEDGMENT

The authors would like to acknowledge all the people
contributing to the tests. Juhana Jauhiainen, Tero Kippola,
Marjut Koskela and Juha Erkkilä have worked on the tests with
the middleware on Centrias test network. Centria would also
like to thank the Finnish Funding Agency for Technology and
Innovation (Tekes) for funding the project Cyber-security in
the Wireless Industrial use case – CyberWI, on which these
tests were executed.

REFERENCES
[1] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control

for Fast, Long Distance Networks,” Proceedings of Tech. Report,
Computer Science Department, NC State University, 2003.

[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review - Research and
developments in the Linux kernel, vol.42, pp.64-74, July 2008.

[3] “A CSMA/CA MAC protocol of Cognitive Networks – emfield”.
[4] P. Sinha, T. Nandagopal, N. Venkitaraman, R.y Sivakumar, and V.

Bharghavan, “WTCP:a reliable transport protocol for wireless wide-area
networks,” Wireless Networks - Selected Papers from Mobicom'99
archive, vol. 8, issue 2/3, pp. 301-316, March-May 2002.

[5] C. Casetti, M. Geria, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP
westwood: end-to-end congestion control for wired/wireless networks”
Wireless Networks archive, vol. 8, issue 5, pp. 467-479. September 2002.

[6] L. A. Grieco and S. Mascolo, “Performance Evaluation and Comparison
of Westwood+, New Reno, and Vegas TCP Congestion Control,” ACM
SIGCOMM Computer Communications Review, vol. 34, no. 2, pp. 25-
38, April 2004.

[7] S. Liu, T. Başar, and R. Srikant: “TCP-Illinois: a loss and delay-based
congestion control algorithm for high-speed networks” Innovative
Performance Evaluation Methodologies and Tools: Selected Papers from
ValueTools 2006, vol. 65, issues 6–7, pp. 417-440, June 2008.

[8] H. Hirai, S. Yamaguchi, and M. Oguchi, “A Proposal on Cooperative
Transmission Control Middleware on a Smartphone in a WLAN
Environment,” in proc. the 9th IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications
(WiMob2013), pp.710-717, October 2013.

[9] A. Hayakawa, S. Yamaguchi, and M. Oguchi, “Reducing the TCP ACK
Packet Backlog at the WLAN Access Point,” in proc. the 9th ACM
International Conference on Ubiquitous Information Management and
Communication (IMCOM2015), 5-4, Bali, Indonesia, January 2015.

[10] Android open source project, http://source.android.com
[11] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP

Westwood: Bandwidth Estimation for Enhanced Transport over
Wireless Links,” in proc. ACM SIGMOBILE 7/01 Rome, Italy, 2001.

[12] K. Miki, S. Yamaguchi, and M. Oguchi, “Kernel Monitor of Transport
Layer Developed for Android Working on Mobile Phone Terminals,”
Proceedings of The Tenth International Conference on Networks (ICN),
pp. 297-302. 2011.

[13] W. R. Stevens, TCP/IP illustrated, Vol.1 Protocol，Pearson Education,
2000.

[14] The dummynet project, http://info.iet.unipi.it/ luigi/dummynet
[15] Iperf For Android Project in Distributed Systems, http://www.cs.

technion.ac.il/sakogan/DSL/2011/projects/iperf/index.html
[16] M. Heikkilä, T Kippola, J. Jämsä, A. Nykänen, M. Matinmikko, and J.

Keskimaula, ”Active Antenna System for Cognitive Network
Enhancement,” 5th IEEE International Conference on Cognitive
Infocommunications (CogInfoCom), pp. 19-24, Vietri sul Mare, Italy,
November 2014.

[17] P. Baranyi, A. Csapo, and P. Varlaki, “An Overview of Research Trends
in CogInfoCom,” in IEEE International Conference on Intelligent
Engineering Systems, pp. 181-186, Tihany, Hungary, July 2014.

