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Abstract—Since mobile terminals such as smartphones 

are basic information tools for users, their communication 
performance is always significant. Modern loss-based 
Transmission Control Protocols (TCP) take aggressive 
congestion window (CWND) control strategies in order to 
gain better throughput, but such strategies may cause a 
large number of packets to be backlogged and eventually 
dropped at the entry point to the wireless access network. 
This problem applies not only to the downstream TCP 
sessions but also to the upstream TCP sessions when the 
terminal is connected via a Wireless Local Area Network 
(WLAN), which disregards the size of packets in its 
scheduling. This paper focuses on the ACK packet backlog 
problem with the upstream TCP sessions, and proposes a 
CUBIC based CWND control mechanism as part of the 
middleware for the Android terminals. It utilizes the 
Round Trip Time (RTT) as an indication for the TCP 
ACK backlog condition at the WLAN AP, and controls the 
upper and lower bounds of its CWND size to suppress 
excessive transmissions of own TCP DATA packets. An 
experimental study with up to three Android terminals 
shows that the proposed mechanism can improve both 
aggregate throughput and fairness of the WLAN, and that 
it is highly effective particularly for cases where very long 
RTTs are observed. 
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I.  INTRODUCTION 
As performance of terminals is improved and a bandwidth 

of a network becomes higher, modern loss-based TCPs such as 
BIC [1] and CUBIC [2] take aggressive CWND control 
strategies in order to gain better throughput over other 
competing TCP sessions. Although such strategies are suitable 
for wired connections, they may cause a large number of 
packets to be backlogged and eventually dropped at the entry 
point to the wireless access network. This is because a wireless 
link can usually offer much narrower bandwidth than its wired 
backhaul and backbone networks. This problem applies not 

only to the downstream TCP sessions but also to the upstream 
TCP sessions when the terminal is connected via a WLAN, 
which disregards the size of packets in its CSMA/CA [3] based 
scheduling.  

This problem depends on performance of terminals and 
type of networks. Therefore, this paper focuses on the ACK 
packet backlog problem with the upstream TCP sessions in 
several environments, and proposes a CUBIC based CWND 
control mechanism as part of the middleware that can be 
implemented in the Android terminals. It utilizes the RTT as an 
indication for the TCP ACK backlog condition at the WLAN 
AP, and controls the upper and lower bounds of its CWND size 
to suppress excessive transmissions of own TCP DATA 
packets. An experimental study with up to three Android 
terminals shows that the proposed mechanism can improve 
both aggregate throughput and fairness of the WLAN, and that 
it is highly effective particularly for cases where very long 
RTTs are observed. 

II. RELATED WORK 
In the case of a wired network, TCP has originally assumed 

that a packet drop is an indication of network congestion, since 
the primary reason for a packet to be dropped is the queuing 
overflow at one of the routers along the path to the other 
communication peer. However, wireless communications 
introduce other causes for packet drops such as fading, 
collisions and interference, which confuse the TCP CWND 
control algorithm to lead to suboptimal performance. Such 
effects of wireless communications on the TCP performance as 
well as techniques to combat those have been extensively 
studied [4][5][6][7] in the literature.  

We also have studied intensively about this problem in 
various environments. Our previous work [8][9] is one of them, 
in which each WLAN terminal attempts to estimate the number 
of neighboring terminals that operate on the same channel by 
monitoring broadcast activities, and adjusts its CWND size 
accordingly to gain its fair share. Details of this work are 
described in Section II C. This paper also presents the results of 
the behavior of Android terminals in in Long Term Evolution 
(LTE)-networks. 



III. BACKGROUND 

A. Android Operating System 
This study focuses on the implementation of our proposed 

mechanism as a middleware of the Android platform. Android 
is a platform for mobile terminals whose development is led by 
Google, and is distributed as a package that includes an 
Operating System (OS) and basic applications. The source 
code of Android is available via the Android Open Source 
Project by the Open Handset Alliance [10]. Thus we can apply 
our proposed method to any other Android terminals with 
minor modification. 

Please note that Android is built based on the Linux kernel, 
which provides basic capabilities such as multistack 
networking, multitasking, virtual-memory management and 
virtual machines. Therefore, this work can be applied to any 
other Linux based terminals or systems although the 
performance evaluation has been conducted only with Android 
terminals. 

Since the default TCP version in Linux is CUBIC, Android 
adopts CUBIC as the transport protocol. CUBIC, like any other 
transport protocols, controls the rate of DATA packet 
transmissions based on CWND, the maximum number of 
packets that can be transmitted without receiving an ACK 
packet from the DATA packet receiver. Setting an appropriate 
CWND is the key to achieving high throughput, which is the 
primary difference between various versions of TCP.  

In CUBIC, CWND is increased gradually per receiving an 
ACK and halved every time a packet loss is experienced as 
shown in Fig. 1. As the CWND size is reduced upon a packet 
loss, it is called a loss-based TCP. Other CWND control 
mechanisms used in TCP Vegas and TCP Westwood are based 
on the observed RTTs, and are called a delay-based TCP [11]. 
Cubic also has a unique feature that changes its CWND with 
passing time, which is not seen in other loss-based TCP. 

Fig. 1. Behavior of CUBIC TCP 

 

 

Fig. 2. Kernel Monitoring Tool 

B. Kernel monitoring tool 
We have developed a method to observe a behavior of 

parameters inside the Linux Kernel code. Our previous work 
[12] successfully embedded a system tool called Kernel 
Monitoring Tool in the Android platform in order to analyze 
the connection status of a mobile host. As shown in Fig. 2, it 
allows users to monitor parameters in the kernel processing at 
the mobile host, which include CWND, RTT, and socket buffer 
queue. They are defined in the TCP implementation of the 
Linux Kernel code, and applications in the user space can 
generally never observe or even recognize them. By means of 
Kernel Monitoring Tool, our middleware can access the current 
values of these parameters in the kernel memory space. 

C. CWND-controlling middleware 
This subsection describes the CWND-controlling 

middleware that has been implemented in our previous work 
[24]. The middleware controls CWND if the terminal 
originates TCP traffic and is connected to the server via a 
WLAN, in order to address congestion among the AP and other 
Android terminals. 

 The middleware can be divided into two parts, as shown in 
Fig. 3. One part adjusts the congestion control, using the 
process interface to prevent segments from overflowing and 
filling the bandwidth. The notification is broadcast by User 
Datagram Protocol (UDP) every 0.3 seconds from the other 
part because the kernel parameters frequently change. The 
adjustment is executed every 10 seconds because the number of 
mobile hosts changes less often, and this lower frequency is 
sufficient to collect information from all hosts, considering the 

notification interval and the arrival rate of the notifications. 

Fig. 3.  Summary of the system  

 



Fig. 4. Composition of the middleware after modification 

Fig. 4 shows the composition of the middleware. The 
values of RTT and minimum RTT (min_rtt) are acquired by 
observing data from the kernel monitoring tool constantly. A 
value of min-rtt is updated by overwriting with the smallest 
RTT during the communication. Based on the acquired values, 
RTT Ratio (ratio_rtt) is obtained with Equation 1, which 
indicates increase and decrease of RTT. The behavior of the 
middleware can be customized based on this value. 

  (1) 

(1) 

Simultaneously, traffic condition is predicted by receiving 
packets and knowing the communication situation of other 
terminals. This system sets levels of upper and lower limit for 
the CWND based on the RTT ratio and the number of 
communication terminals using the proc interface, which is 
controllable from an outside process of kernel and can be tuned 
up for optimization. Using this method, the control system can 
limit the quantity of traffic outbreak and share a bandwidth of a 
terminal, after the initial communication is enabled by setting a 
CWND level at an appropriate value. 

The communication situation is checked approximately 
every 0.5 seconds in the current implementation. CWND level 
is modified when the middleware detects another terminal that 
shares the same AP begins communication and the RTT values 
suddenly increase as a result. With 0.5 seconds frequency, the 
kernel monitoring tool can grasp the timely situation 
moderately and optimize it. If the frequency is too high, it may 
become an overhead. 

Fig. 5. Environmental topology 

(2) 

In this middleware, we do not modify the congestion 
control algorithm itself of the basic TCP, which functions 
similar to the default case and should be good for the 
interoperability. Nevertheless, the communication is optimized 
by setting the levels of upper and lower limit for the CWND, 
and the congestion control is adjusted based on the 
communication situation of AP surroundings. In this paper, we 
prove our method works well in various environments. 
Particularly, it is possible to adapt our method to different 
network environments, such as WLAN and LTE networks. 

 

 

(3) 

D. Equations for proposed control mechanism 
In each delay environment, we decide the levels of upper 

and lower limit for the CWND referring to Equations 2, 3 and 4 
[13]. In these equations, the Bandwidth Delay Product (BDP) is 
filled with data transferred by connections that are assigned the 
divided bandwidth. The limit values are decided based on these 
equations. 

 (4) 

IV. TESTING AT WLAN NETWORK 
We evaluated the basic performance in WLAN network 

with the experimental system in Figure 5. The client terminals 
were connected to an AP over 802.11g, and the AP was 
connected to the server host through the wired route. The client 
terminals were Nexus 7. The number of terminals ranged from 
1 to 7. To emulate network delay and packet loss, a network 
emulator, Dummynet [14], was inserted between the AP and 
the server host; 256 ms delay was set by assuming a high-delay 
environment. In this environment, the wired parts are 
connected with higher rate because of Gigabit Ethernet, 
whereas a bandwidth is only about 20Mbps in the wireless 
parts. Thus, the radio transmission sections between the AP and 
the terminals were a bottleneck, which was a typical case when 
mobile terminals access to a remote server through a wireless 
network. Especially, when the number of the terminals 
connected simultaneously increases, a buffer overflow may 
occur in the AP and the length of the packet queue for 
transmission increase. As a network benchmark tool, Iperf for 
Android [15] was installed on all the terminals.  



Fig. 6. Effect of the middleware 

Fig. 6 shows the relationship between the number of 
terminals and the total throughput. The blue and red lines show 
the throughput without and with the middleware, respectively. 
The blue line drops when the AP is overloaded, i.e. the number 
of terminals exceeds five (5). In contrast, the red line does not 
decrease with an advantageous effect of the middleware. The 
performance with seven (7) terminals is improved by 
approximately 1.25 times. 

V. TESTING AT LTE NETWORKS 
The testing environment at Centria enables a possibility to 

test the effects of data traffic and congestion in a heterogeneous 
network (HetNet). In its previous studies, Centria has been 
working to evaluate and improve the performance of the 
mobile network. Recently, Centria has concentrated on 
evaluating the performance of active antenna system (AAS) 
[16]. As a result it is seen that AAS provides a flexible 
beamforming for changing situations in the network. 
According to Centrias tests the AAS improves the throughputs 
within the system and flexibly adds capacity to locations where 
it is needed. However, AAS configuration is a challenge, as 
tasks are performed in changing environment. Some lighter 
solutions are required while AAS is developed to be fully 
exploitable on tests and demonstrations.  

Fig. 7. Drive test setting of AAS on the testing environment of Centria. 

Fig. 8. Transmission of CWND and CA_STATE 

As there are different kinds of LTE bands within the 
Centria test environment (see Fig. 7), many types of 
demonstrations can be performed with them. The setup of 
WLAN (described in Section IV) was implemented on the 
Centria’s test on LTE network environment. 2.1 GHz passive 
antenna was used for testing with two Nexus 5 smartphones. 
Nexus 5 was selected to be the terminal of the test because it 
supports the used LTE bands. Both Nexus-terminals were 
using Android OS. Iperf and the transmission control 
middleware were installed in them. One of the phones was 
used as a server and the other one was used as a client. As there 
were only two terminals at use in this test, the LTE network 
was congested by uploading packets to the network with a load 
generator. On the first test round the throughput was tested 
without any extra load on the network, where 71.5 Mbytes 
were transferred within the test sequence of 60 seconds. The 
average transfer speed was 9.99 Mbits/sec. In the second round 
the test was executed the same way, but artificial load was 
added to the network with uplink of a load generator with a 
capacity of 10.1 Mbits/sec. During the second test round the 
amount of transferred data was 40.2 Mbytes and the speed was 
5.63 Mbits/sec.  

As the tests were executed without the middleware on, the 
amount of transferred data was 71.9 Mbytes and the speed 10 
Mbits/sec and with generated load 41.8 Mbytes and 5.80 
Mbits/sec. This indicates that the results of the tests in LTE 
network differ from the results on the WLAN. In the cases with 
the brief testing period, it was observed that the total size of 
data transferred without the middleware was greater than that 
with it. This is because the middleware was developed for 
cases when the number of terminals connected concurrently to 
the same AP is large. In other words, we can utilize the 
middleware effectively with heavily crowded network. Hence, 
we need to evaluate with a larger number of terminals to 
observe the effect of middleware clearly. However, network 
congestion can be observed in the network with uplink of load 
generator (Fig 8). Also, a time transition of CA_STATE that 
indicates the state of TCP acquired by the kernel monitoring 
tool is shown in Fig 8. In these states:  

• "0" means "Open": normal state  



• "1" means "Disorder": replacement of packets 

• "2" means "Congestion Window Reduced (CWR)": 
congestion notice 

• "3" means "Recovery": Fast Retransmission 

• "4" means "Loss": Timeout and loss of Packets  

The communication with artificial load has some errors and 
congestion happens. It is considered that the middleware is 
likely to achieve higher performance if a heavier network 
burden is observed. 

VI. CONCLUSIONS 
This study has focused on the ACK packet backlog 

problem with the upstream TCP sessions, and has proposed a 
CUBIC based CWND control mechanism that utilizes the RTT 
as an indication for the TCP ACK backlog condition at the 
WLAN AP. It controls the upper and the lower bounds of its 
CWND size to suppress excessive transmissions of own TCP 
DATA packets. Moreover, we applied the environment of 
WLAN (Section IV) to the Centria’s LTE network test (Section 
V) and evaluated the transmitting performance of the Android 
terminal. 

The experimental study with up to seven (7) Nexus 7 
terminals in WLAN network shows that the congestion control 
middleware can improve the total throughput of the WLAN. In 
particular, it improved the TCP throughput by a factor of 1.25 
when many terminals are communicate through the same AP. 

Continuing the analysis, we evaluated the performance in 
LTE network. Then, we revealed that the experimental study 
with the two terminals in LTE network did not properly 
demonstrate the effect of the middleware, because it is believed 
that the middleware is effective in the case of heavy network 
burden such as when artificial delay is larger or when there is a 
larger number of terminals communicate in the same network, 
while such conditions were not present during aforementioned 
experiment.   

Solutions of cognitive infocommunications set a new kind 
of demand for the networks and their capacity, as the amount 
of communication between human and infocommunication 
devices within the networks will increase. [17] In case of 
congestion in the network, the reliability of the data transfer 
must be improved. New solutions are to be developed and 
implemented to meet this rapidly growing demand. Such 
solutions as we have presented on this paper, will utilize the 
maximum capacity available within the network and speed up 
the data traffic. 

 Centria will continue in collaboration with Ochanomizu 
University testing smartphones in different networks. For our 
future work, we will test the middleware with a large number 
of smartphones and a server-PC to see the effect. 
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