Implementation and Evaluation of
Secure and Optimized IP-SAN Mechanism

Kikuko Kamisaka
Graduate School of Humanities and Sciences
Ochanomizu University
2—-1-1, Otsuka, Bunkyo-ku
Tokyo 112-8610, JAPAN
kikuko@ogl.is.ocha.ac.jp

Saneyasu Yamaguchi
Department of Computer Science
and Communication Engineering

Kogakuin University
1-24-2, Nishishinjuku, Shinjuku
Tokyo 163-8677, JAPAN

Masato Oguchi
Department of Information Sciences
Ochanomizu University
2-1-1, Otsuka, Bunkyo-ku
Tokyo 112-8610, JAPAN
oguchi @computer.org

sane @cc.kogakuin.ac.jp

Abstract— Since IP-SAN consolidates distributed storage by
using TCP/IP networks, it not only reduces management costs
but also realizes a large scale storage system on Wide Area
Network(WAN). In the case of accessing remote storage through
open TCP/IP networks, security has a significant meaning.
Although it is possible to employ IPsec encryption on IP-
SAN, performance degradation due to inefficiency of encryption
processing is concerned when IPsec is used.

In this paper, we have proposed a method of optimization for
encryption processing on IP-SAN. We have also implemented the
middleware based on our proposed method, and evaluated the
optimized IP-SAN system in regard to sequential write access.

I. INTRODUCTION

With the rapid spread of broadband networks, a large
volume of data is stored and managed in a storage system in
many business fields recently. However, due to rapid increase
of a volume of data, the storage management cost is one of the
most serious issues of storage systems. Storage Area Network
(SAN)[1] is a high-speed network connecting multiple storage
devices to a server. Because SAN allows the storage to be
consolidated and managed in a centralized manner, it is widely
used in storage area for efficient management of many storage
devices.

Current generation SAN based on Fibre Channel (FC)
technology uses high-speed and dedicated networks. Figure
1 shows an overview of FC-SAN. Due to defects in FC-
SAN including its hardware costs and distance limitation (until
about 10km), there are lots of barriers to the introduction
of FC-SAN. In contrast, IP-SAN, the next generation SAN,
has emerged recently to make a storage system more reason-
able and manageable. IP-SAN is generally established using
standard TCP/IP protocols and Ethernet instead of FC and
its dedicated protocol of SAN. Figure 2 shows an overview
of IP-SAN. Since IP-SAN hardware is inexpensive and there
are many engineers for IP-SAN, it can reduce introduction
and operational costs drastically. Moreover, IP-SAN provides
seamless integration with existing IP networks, it is possible
to realize a large scale storage system on a wide area SAN, in
which a long distant backup can be performed for disaster
planning. On the other hand, since IP-SAN uses TCP/IP
networks, issues of low transmission a speed and high CPU
load are pointed out[2]. An Internet SCSI (iSCSI) protocol[3],
ratified by the IETF in April 2004, is expected to become a
dominant IP-SAN protocol in the near future. iSCSI is a block-
level data transfer protocol, in which each SCSI Command is

o LAN -
| | | o LAN a
i | | |
Server = =
(Initiator) Server
(Initiator)
Storage Storage
(Target) (Target)
Fig. 1. FC-SAN Fig. 2. IP-SAN

rrererererrrrrrrrrrrrred
encapsulated into TCP/IP packets and transferred between a
server (initiator) and storage (target) over IP networks.

When storage is accessed through the IP-SAN, using open
TCP/IP networks brings new challenges as a security concern.
Although we can employ IPsec encryption on IP-SAN, perfor-
mance degradation caused by sequential encryption processing
of IPsec should be concerned in a data-intensive application.
Because a trade-off exists between security and performance
in regard to IP-SAN, it is necessary to employ a well-balanced
data access scheme for a storage system.

We paid attention to inefficiencies in IPsec sequential
encryption processing. In this paper, we have proposed the
method of optimization for more efficient encryption process-
ing compared with traditional method using IPsec. Moreover,
we have implemented the IP-SAN system based on our pro-
posed method, and evaluated our IP-SAN system in regard to
sequential write access in a long-latency environment. We have
also analyzed the experimental results using throughput mod-
eling. As a consequence, our implemented system optimized
for encryption processing has achieved better performance and
proved to be more efficient than using IPsec on a long-latency
network.

II. RELATED WORK

Several studies about performance evaluation or implemen-
tation of IP-SAN have been presented until now. Ng et al.[4]
have early studied performance of SCSI over IP and analyzed
it in great detail. Sarkar et al.[5] have compared iSCSI software
with hardware implementation such as TCP Offload Engine
(TOE) and Host Bus Adapter (HBA). As a consequence,
although such dedicated hardware is effective for reducing the
CPU load, it does not achieve better throughput than that of
the software implementation. Aiken et al.[6] have presented

. 1 Cycle . 1 Cycle R
Write Write
» Command Command Time
Initiator Encryption] Encryptiol
Data (—lf—',\/\ Data
Target Decryption Decryption
R2T Response R2T
Fig. 3. iSCSI sequential write access with encryption in the upper-layer
. 1 Cycle _
1 Cycle g
Write Write
o Command Command Time
Initiator Encryption Encryptionfr—3 T
Data \ A Data \
Target Dccrypti(... Decryptiu..:
¢ R2T R2T Response
Response
Fig. 4. iSCSI sequential write access with optimization of encryption
processing

performance evaluation of iSCSI software on a network with
latency. In SAN and WAN environment, they have shown that
the iSCSI software implementation achieves almost the same
performance with that of FC in the case of a large block size.
In this paper, because the focus of our research interest is
not only reduction of the CPU load but also improvement of
overall performance, we have used software implementation of
iSCSI. Gauger et al.[7] have presented a concise modeling and
performance evaluation of the iSCSI protocol in TCP/IP-based
MAN and WAN networks.

In a security-related work, Gibson et al.[8] have evaluated
Network-Attached Secure Disks (NASD). They have proposed
and implemented a secure Network SCSI mechanism with
dedicated hardware and protocols. Tang et al.[9] have com-
pared IPsec security schemes with SSL using iSCSI soft-
ware implementation. They mentioned that SSL throughput
outperforms that of IPsec in a large block size although
the IPsec throughput is higher than that of SSL in a small
block size. In addition, they have shown the CPU load of
SSL is higher than that of IPsec. Joglekar et al.[10] have
proposed two techniques for improving the performance of
iSCSI protocol. Their methods are optimization of Cyclic
Redundancy Codes (CRCs) are being calculated and iSCSI
interacts with the TCP layer. Many papers about IP-SAN
or iSCSI performance evaluation are presented until now.
However, security techniques such as encryption for improving
performance using iSCSI are not discussed.

IITI. 1ISCSI WRITE SEQUENCE WITH OPTIMIZATION FOR
ENCRYPTION PROCESSING

A. Issues of Applying IPsec on iSCSI Networks

In order to transfer data to and from the storage securely
on an iSCSI network, iSCSI can employ IPsec that offers
strong encryption and authentication functions for IP pack-
ets. However, the encryption processing triggers performance
degradation when mass volume of data should be transferred.
Specifically in a long-latency environment, ACK or a SCSI
Command takes a long time until it arrives at the other
machine. Moreover, IPsec is implemented in IP layer located
on the lower-level. If we try to improve the performance of
IPsec encryption processing, IP and other codes inside a kernel
of operating systems are required to be modified.

Initiator (Server) Target (Storage)
[
disk

Optimization| Middleware . Middleware

o SCSI Driver SCSI driver

iSCSI Driver iSCSI Driver

TCP TCP
1P 1P
Ethernet Driver Ethernet Driver
Ethernet Ethernet
I

o

Fig. 5. Our proposed model

B. Optimized Method for Encryption Processing in the Upper-
layer

We have proposed a method of optimization for encryption
processing in the upper-layer instead of using IPsec. Our
proposed model is depicted in Figure 5. The iSCSI system is
a layered structure consisting of SCSI/iSCSI and TCP/IP. The
encryption and optimization are performed in the middleware
on top of SCSI layer in our proposed model.

Figure 3 depicts an example of iSCSI sequential write
access in the case of encryption in the middleware located on
the upper-layer without optimization. First, data is encrypted
in the upper-layer and a SCSI Write Command is issued in the
SCSI layer of the initiator. Next, a Ready to Transfer (R2T)
Command is sent from the target to the initiator when the
target becomes ready. After the initiator receives the a Ready
to Transfer (R2T) Command from the target, the encrypted
data is transferred. At the target, data is decrypted in the upper-
layer at the target and written to the target’s disk. Finally, the
Response Command is sent back to the initiator in the SCSI
layer, and a write access cycle with encryption is terminated.
The benefit of executing the encryption processing in the
upper-layer is that the performance improvement methods can
be applied without modifying the implementation of IP layer.
Thereby, our proposed method for optimization can be applied
easily, so as to improve the performance of secure IP-SAN.

On the other hand, the method optimized for encryption
processing is depicted in Figure 4. This method is realized
by encryption pre-processing performed in the middleware,
as shown in Figure 5. In a sequential access cycle without
optimization, while one machine is encrypting or decrypting,
waiting time for communications exists at the other machine,
as shown in Figure 3. With the optimization of encryption
processing in the upper-layer, it is possible to encrypt the next
data consecutively during waiting time for communications, as
shown in Figure 4. Overlapping the iSCSI sequential access
cycle by encryption pre-processing assures effective use of
CPU availability, so that the system performance improvement
is expected.

IV. IMPLEMENTATION OF OPTIMIZED METHOD IN OUR
MIDDLEWARE

In this paper, we have implemented the method optimized
for encryption processing in the upper-layer as the middleware.
In the implementation, we have used an open source operat-
ing system, Linux as the initiator and the target. As iSCSI
implementation also, we have selected open source software,
in consideration of low cost and source code availability.
Reference implementation developed by the University of

Application
file 700 (1) (read)]

(2) write request (block size)

Middleware call library

encrypted
(4) encryption data m
= }é: = =
= [[

data (3) fork data
=

(5) raw_write request

Lower-layer pass to lower-layer

(including iSCSI/SCSI Driver)

g

13

Fig. 6. Middleware in the initiator

New Hampshire InterOperability Laboratory[11] is used for
an iSCSI driver.

A. Implementation Details in the Initiator

Our middleware in the initiator has a function of en-
cryption and optimization, implemented on the upper-layer.
The middleware is constructed with library functions called
from the application. As implementation of encryption, we
employ symmetric-key cryptographic algorithm, Triple Data
Encryption Standard (3DES), used in IPsec by default. The
encryption is executed by calling an encryption function in
libdes library used in IPsec.

Figure 6 shows our middleware implementation in the
case of sequential write access using a raw device of the
initiator. As shown in Figure 6, (1) first, a file is read in
the benchmark application in the initiator. (2) Next, a write
instruction for each data segment with a defined block size
is issued as a single process in the application. (3) The data
segments are passed from the application to the middleware,
and the process that receives the segments in the middleware
forks into multiple images in order to perform processing
concurrently. (4) Each process calls an encryption function
in [libdes library concurrently. (5) A write request for each
encrypted data segment is issued to a raw device in the initiator
in parallel. Thereby, the next data segment is encrypted by a
forked process in the middleware at the initiator during waiting
time; e.g., during the data is decrypted at the target side. Our
implemented middleware allows pre-processing of encryption
consecutively, so that overall processing time is reduced.

B. Implementation Details in the Target

In contrast, our system in the target does not implement the
optimization function. Only the decryption function is imple-
mented in the upper-layer. Our middleware is implemented as
a kernel module on the top of SCSI layer as shown in Figure
5, the function of decryption in the upper layer is independent
of the existing SCSI layers. Thereby, this enables us to apply
the method of performance improvement to an existing system
easily without modifying IP and other codes inside a kernel.

Figure 7 shows our middleware implementation in the case
of sequential write access. After encrypted data segments are
transferred to the target, (1) first, a write request for each
incoming data segment is issued at iISCSI/SCSI device driver.
(2) Next, each data segment is decrypted in our kernel module.
(3) Decrypted data segments are passed to the handle_cmd
function at iSCSI/SCSI driver and (4) they are written as a

Disk

(3) Write
Middleware (512Byte)
Encrypted
Data (2) decryption Data
o —
= (|
CJ =
(1) write
. request
SCSI Driver
11
Fig. 7. Middleware in the target

Dummynet :
Server Intel Xeon 2.4GHz Storage
(Initiator) | 512MB DDR (Target)
SDRAM
Intel Pro/1000MT == | Target :

Initiator :

Intel Xeon 2.4GHz
Intel Xeon 2.4GHz

Dummy delay

512MB DDR

512MB DDR SDRAM

SDRAM - 36GB SCSI HD

Intel Pro/1000XT Gigabit Intel Pro/1000XT

pC pc Ehemel e
(Linux (FreeBSD 4.9 *~ witching Hul (Linux
2.4.18-3) Dummynet) 2.4.18-3)
Fig. 8. Experimental setup

plain text in the target’s disk sequentially. Thus, our imple-
mented kernel module decrypts data in the upper-layer by
intercepting a Write Command at iSCSI/SCSI device driver.

V. EXPERIMENT WITH OUR IMPLEMENTED IP-SAN
SYSTEM

In consideration of an importance of write access in IP-
SAN, we have experimentally evaluated sequential write ac-
cess in our implemented IP-SAN system. Since IP-SAN is
expected to be used in a long-distance environment for disaster
planning, we have evaluated it in a long-latency environment.
Figure 8 shows an experimental setup. A network delay
emulator, Dummynet[2][12], is inserted between the initiator
(server computer) and the target (storage). One-way delay
time between the initiator and the target is changed from
1ms to 64ms. A receiver’s TCP window size is 8MB, which
is large enough for this environment. In our experiments,
FreeS/WAN for Linux[13] is used for a comparison as IPsec
implementation. IPsec is set up with a transport mode that
encrypts a host-to-host communication, and an ESP protocol
is used. Because the benchmark software issues system calls
to a raw device rather than a file system, the issued system
calls are always transmitted to the SCSI layer in the target
side without any cache hit in the initiator side.

A. Evaluation of Encrypted Write Access Throughput

We have evaluated the throughput of sequential write access
in our system by comparing it with the performance of
IPsec. The number of forked processes for the encryption pre-
processing is changed from two to ten. In the rest of this paper,
“OP-27, “OP-4”, “OP-6", “OP-8” and “OP-10" stand for the
number of forked processes for pre-processing in our IP-SAN
system.

10 3 7
"+ 0P2 "+ 0P-2 A
9 [-=-0p4 o ¢ F
g [~ 0P6 3
% OP-8 v =
— 7 [~*0P-10 e = = — g 5[
§ —*— [Psec /K/ % " - § 2 g
z° s .~ g g4
= s - — e - = =
= > S , . = § 3
=1 z - = = 37
a 4 AT P - ———— o =1
] 3 ¥ R e / En 1 £
R 2 g2 0
£ 2 e = £ E
- - «// B =
L7 —
0 : . 0 0
8 16 32 64 128 256 512 1024 204 8 16 32 64 128 256 512 1024 204 0 1 2 4 8 16 32 64
Block Size [KB] Block Size [KB] One-way delay time [ms]
Fig. 9. Throughput on 8ms latency network Fig. 10. Throughput on 64ms latency network Fig. 11. Throughput improvement ratio
“*QP2 - ®-QOP-4 ~A-OP-6 % OP-8 e-0P2 -®-0P4 -4-0ps X OP-8 - +-QP2 - ®-0P4 —A-QP6 % OP-8
—*—OP-10 —*—IPsec ‘ % OP-10 —*—IPsee —¥—OP-10 —*—IPsec
100 100 100
90 90 90
S
80 80 = 80
=70 0 é 70
=60 0 £ 60
8 ER
£ 50 50 5 50
N 9
= 40 0 G 40
g 30 30 g 30
= & 20
<20 20 g
10 10 Z 10
0 L L 0 0
8 16 32 64 128 256 512 1024 2048 8 16 32 64 128 256 512 1024 2048 0 ! 20 4d1 t?‘ 16 32 04
Block Size [KB] Block Size [KB] ne-way delay time [ms]
Fig. 12. CPU utilization on 8ms latency network Fig. 13. CPU utilization on 64ms latency network Fig. 14. Average CPU utilization

The experimental results of throughput with 8ms and 64ms
delay time are shown in Figure 9 and 10. The IPsec throughput
is saturated at the block size of more than about 512KB in all
cases. On the contrary, throughput of our system (from OP-2 to
OP-10) is much higher than that of IPsec in both block sizes.
In addition, in the case of using relatively small block size,
throughput is greatly increased with the number of processes
for pre-processing in our middleware. In the 8ms latency
environment, whereas IPsec throughput is 4.0MB/sec at most,
our system achieves up to 8.8MB/sec. In the 64ms latency
environment, although IPsec throughput is up to 0.6MB/sec at
most, our system achieves up to 2.8MB/sec.

In the experiment, because both our system and IPsec exe-
cute encryption in a long-latency environment, the throughput
is a low absolute value compared with no encryption case.
However, since 10Gigabit Ethernet has already emerged at
present, performance of network hardware is expected to im-
prove in the future. In this case, though both the performance
of our system and that of IPsec improve, we expect that our
system outperforms IPsec as confirmed in the experiment.

Figure 11 shows an average throughput improvement ratio
against [Psec in each one-way delay time. Throughput of our
system is lower than that of IPsec slightly on the Oms latency
network. However, as one-way delay time becomes longer than
Ims, our system (from OP-4 to OP-10) outperforms IPsec.
Our system’s throughput (OP-10) on the 1ms latency network
achieves about up to 1.5 times of IPsec. There is no significant
difference between our system and IPsec in the short-latency
network. On the contrary, as one-way delay time increases, the
improvement ratio becomes higher. Our system’s throughput
(OP-10) achieves about up to 4.6 times of IPsec on the 8ms

latency network. On the 64ms latency network, our system’s
throughput achieves about up to 6.6 times of IPsec. This
is because the time of available CPU, i.e., waiting time for
communication, becomes longer compared with encryption
or decryption time as one-way delay time becomes longer.
In fact, the advantage of optimized encryption processing
increases on a long-latency network by encrypting next data
segments consecutively before the previous sequential access
cycle is finished. Consequently, our system’s throughput (OP-
10) achieves from 1.4 to 6.6 times of IPsec.

B. Evaluation of CPU Utilization of Encrypted Write Access

The CPU utilization during the experiment is shown in
Figure 12 and 13. These figures show CPU utilization in
the case of 8ms and 64ms latency network. Figure 14 shows
an average CPU utilization in each one-way delay time. Our
system’s CPU load is higher than that of IPsec in all cases.
However, as one-way delay time increases, the CPU utilization
becomes smaller. On the 64ms latency network, the average
CPU utilization of our system is up to 20% at most, as
shown in Figure 14. Our system’s CPU on a long-latency
network can still afford to process the data concurrently,
different from the case with a short-latency network. In the
case of a long-latency network, communication time becomes
longer compared with encryption or decryption time. Thus, our
middleware is effective compared with IPsec on a long-latency
network.

VI. DISCUSSION ON THE EVALUATION EXPERIMENT

A. Security Concerns

From a security standpoint, we discuss the comparison of
our proposed mechanism with IPsec in this subsection.

The ESP protocol in IPsec ensures integrity of data by
adding authentication data as an optional extra. Because we
have implemented and evaluated our proposed method with
particular emphasis on protecting data confidentiality, we do
not evaluate it about integrity of data. However, it is easily
possible to add a feature to our middleware that calculates
message digest in the initiator and the target, and compares
two values.

Additionally, if a tunnel mode that encrypts transferred
data from gateway to gateway is used in IPsec, it encrypts
not only TCP data but also IP header and TCP header in
IP layer. In this experiment, because IPsec uses a transport
mode, IP header is not encrypted in both our system and
IPsec. At the same time, in our middleware, TCP header that
includes a port number is not encrypted. However, if we add
the authentication feature that prevents masquerading to our
middleware, it is possible to avoid the issue. Actually, iSCSI
has authentication schemes between the initiator and the target,
and it can be decided which authentication schemes is used by
negotiation. Examples of them include Kerberos V5, Simple
Public-Key GSS-API Mechanism, Secure Remote Password
and Challenge Handshake Authentication Protocol (CHAP).
Therefore, even if TCP header is not encrypted in our system,
it is not a signifficant security problem because the iSCSI
authentication scheme can be used.

From an encryption algorithm standpoint, in the year 2000,
the US National Institute of Standards and Technology (NIST)
announced that Rijndael was selected as Advanced Encryption
Standard (AES). While it is possible for various software and
hardware to support AES encryption lately, 3DES encryption
algorithm is still used in many devices by default at present. In
our implementation, 3DES is employed because we consider
it practicality in the current environment. However, since it
is possible to apply AES to our middleware optimized for
encryption processing, we assume that the performance of our
system should also be improved in AES.

B. Theoretical Evaluation using Throughput Modeling

We have discussed throughput modeling derived from our
proposed method with respect to sequential write access, and
compared it with the experimental results of our implemented
system. We have modeled the both cases of our middleware;
without optimization and with optimization (the number of
forked processes for pre-processing is two). First, we explain
the throughput modeling in the case of encryption in the
upper-layer without optimization. As shown in Figure 3, data
is encrypted at the initiator side at first, and a Response
Command is eventually returned to the initiator. We refer
to this sequence as one cycle time in this subsection. The
following Equation (1) is a relational expression of one cycle
time (ICYCLE), Round Trip Time (RTT), data transfer time
(TRANSFER), encryption time (ENC) and decryption time
(DEQ).

1CYCLE =2xRTT+TRANSFER+ENC+DEC (1)

The following Equation (2) is a relational expression of
data transfer time (TRANSFER), data size (DATASIZE)
and throughput in the lower layer (SOCKET). SOCKET is

—#— Calculated throughput (w/o Optimization)

6 F —#— Actual Measurement (w/o Optimization)
—A— Calculated throughput (w/ Optimization)
—>— Actual Measurement (w/ Optimization)

///'74<'
, .
//

4

Throughput [MB/sec]
oe

8 16 32 64 128 256 512
Block Size [KB]

1024 2048

Fig. 15.
network

Calculated throughput and Actual Measurement on 8ms latency

throughput below iSCSI-layer. This is the value in a simple
socket communication without iSCSL.
TRANSFER = DATASIZE 2
- SOCKET)
The 3DES algorithm does almost the same amount of
calculation in both encryption and decryption. Therefore, we
assume that the encryption time is the same as decryption time.
In our experiments, the encryption throughput is 10.82MB/sec.
Thus, the projected throughput of sequential write access in
our system without optimization is modeled as the following
Equation (3) using block size (BLOCK), encryption through-
put (ECN_TH) and decryption throughput (DEC_TH).

THROUGHPUT

B BLOCK 3)
= BLOCK BLOCK BLOCK
2+« RTT + sockpr v ENoTn + DECTH

On the other hand, based on Figure 4, we model the
throughput in the case of encryption with optimization in the
upper-layer. The relational expression of throughput in the
optimization is modeled as the following Equation (4). Be-
cause the next data segment is encrypted during waiting time
for communications, decryption time is hidden by encryption
time.

BLOCK

(4)
BLOCK __ BLOCK
RTT + socker + ENCTH

THROUGHPUT =

Figure 15 shows calculated values from the Equation (3) and
(4), and actual measurements with and without the optimiza-
tion on a 8ms latency network. From Figure 15, the values of
the calculated throughput using the modeling are close enough
to the actual measurements, except more than 512KB block
size cases. In the case of large block sizes (1MB and 2MB), the
actual measurements is saturated due to the limit of processing
throughput of Dummynet. Thus, it is demonstrated that the
throughput modeling by Equation (3) and (4) is almost correct.

C. Restrictive condition of the number of forked processes

In regard to our proposed method of optimizing for en-
cryption processing, we have considered restrictive condition
determined by the number of forked processes in parallel. As
one of the ways to determine the most appropriate numbers of
forked processes, we have taken into account how much data
can be encrypted during a waiting time for communication.
First, from Figure 4, the following Equation (5) can be

Throughput of OP-x/Throughput of OP-2

OP-2 OP-4 OP-6 OP-8 OP-10

The Number of Forked Process
Fig. 16. Throughput ratio against the case of OP-2 on 64ms latency network

extended modeling of preceding subsection. This is a relational
expression of Round Trip Time (RTT), data transfer time
(TRANSFER), encryption time (ENC) and decryption time
(DEQ).

2+« RTT+ DEC =n*(ENC+TRANSFER) (5)

The left-hand side of Equation (5) stands for the waiting
time for communications in one cycle time. In contrast, the
right-hand side of Equation (5) stands for the execution time
of encryption processing in parallel. The positive number n
indicates the number of forked processes. Equation (6) is
derived from Equation (5).

_ 2%RTT+ DEC
"= ENC + TRANSFER

n in Equation (6) stands for the maximum number of forked
processes with which ideal performance improvement can be
achieved. In fact, under such a condition, if the number of
forked processes is set to n, n times throughput improvement
is expected.

Figure 16 shows throughput ratio based on the experimental
results (Figure 10) against the case of OP-2 (the forked
processes are two) on the 64ms latency network. In Figure
16, “ideal case” indicates ideal values; n times throughput im-
provement in our system when the number of forked processes
is n.

On the 64ms latency network, n in Equation (6) is 15.7 in
32KB block size, 7.9 in 64KB block size and 4.1 in 128KB
block size. They are limit values of the number of forked pro-
cesses until which ideal throughput improvement is expected.
In 16KB and 32KB block sizes, the performance improves
linearly from OP-2 to OP-10. However, the performance does
not improve linearly more than OP-8 (close to 7.9) in 64KB
block size, and more than OP-4 (close to 4.1) in 128KB block
size. The value of n derived from Equation (6) is almost
equal to our experimental results (Figure 16). In this way,
the maximum number of forked processes with which ideal
performance improvement is represented by Equation (6).

(6)

D. Applicability to the realistic network

We have evaluated our system in a long-latency environment
using the network delay emulator inserted between the initiator
and the target. In this experiment, we have not considered

impact of jitter or packet loss in actual wide area networks.
However, if TCP retransmission occurs due to packet loss,
IPsec that executes encryption in IP layer is required to repeat
the encryption of the lost packets. In contrast, in the case of
our proposed method, since data segments encrypted in our
middleware perched on the TCP layer, the retransmission of
the data stored in TCP buffer is performed. In such a case,
lost packets are not required to be encrypted again in our
system. Therefore, in actual traffic, the performance of our
system receives less impact by packet loss than that of IPsec.

VII. CONCLUSION

In this paper, in order to prevent performance degradation
that is caused by IPsec encryption processing, we have imple-
mented middleware based on the proposed method optimized
for encryption processing. In our proposed method, transferred
data is encrypted in the upper-layer on top of the SCSI layer
instead of using IPsec. Thus, the scheme for the performance
improvement can be applied without modifying the implemen-
tation of IP layer, and efficient secure communications by
pre-processing of encryption in the upper-layer are realized.
In addition, we have measured the throughput and the CPU
utilization of iSCSI sequential write access in a long-latency
environment. We have also analyzed the experimental results
in our system by modeling the throughput. Our system’s
throughput achieves 1.4-6.4 times of IPsec on from lms to
64ms latency networks. As a consequence, our middleware
optimized for encryption processing has achieved better per-
formance and is more efficient than using IPsec on a long-
latency network.

In the future, we plan to evaluate our middleware in a more
practical environment, such as multiple initiators and targets.
We will also investigate the effect of the practical environment
on our IP-SAN system.

REFERENCES

[1] “Storage Networking Industry Association,” http://www.snia.org/.

[2] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa, “iSCSI Analysis System
and Performance Improvement of Sequential Access in a Long-Latency
Environment,” in IEICE Transaction on Information and Systems, vol.
J87-D-1.

[3] “iSCSI Draft,” http://www.ietf.org/rfc/rfc3722.txt.

[4] W. T. Ng, B. Hillyer, E. Shriver, E. Gabber, and B. Ozden, “Obtaining
High Performance for Storage Outsourcing,” in Proc. FAST 2002,
USENIX Conference on File and Storage Technologies.

[5] P. Sarkar, S. Uttamchandani, and K. Voruganti, “Storage over IP: When
Does Hardware Support help?” in Proc. FAST 2003, USENIX Conference
on File and Storage Technologies.

[6] S. Aiken, D. Grunwald, A. Pleszkun, and J. Willeke, “A Performance
Analysis of the iSCSI Protocol,” in Proc. 20th IEEE Symposium on Mass
Storage Systems and Technologies (MSS ‘03).

[7]1 C. Gauger, M. Koehn, S. Gunreben, D. Sass, and S. G. Perez, “Mod-
eling and Performance Evaluation of iSCSI Storage Area Networks
over TCP/IP-based MAN and WAN networks,” in Proc. The Second
International Conference on Broadband Networks, vol. 2.

[8] G. A. Gibson, D. F. Nagle, W. C. II, N. Lanza, P. Mazaitis, M. Unangst,
and J. Zelenka, “NASD Scalable Storage Systems,” in Proc. Extreme
Linux Workshop in the 1999 USENIX.

[9] S.-Y. Tang, Y.-P. Lu, and D. H. C. Du, “Performance Study of Software-

Based iSCSI Security,” in Proc. First International IEEE Security in

Storage Workshop.

A. Joglekar, M. E. Kounavis, and F. L. Berry, “A Scalable and High

Performance Software iSCSI Implementation,” in Proc. FAST 2005,

USENIX Conference on File and Storage Technologies.

“InterOperability Lab in the University of New Hampshire,” http://www.

iol.unh.edu/.

“dummynet,” http://info.iet.unipi.it/~1uigi/ip\ -dummynet/.

“FreeS/WAN Project,” http://www.freeswan.org/.

[10]

[11]

[12]
[13]

