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1 Abstract

DNA nanotechnology enables the creation of

nanoscale structures and devices using DNA’s unique

properties, including programmability, cost-effective

synthesis, and nanoscale precision. A significant chal-

lenge remains in synthesizing diverse DNA strands

to construct complex structures. This paper focuses

on optimizing the size of DNA molecular assemblies

as a proxy for molecular robot shapes, which sig-

nificantly influence their movement. We develop a

surrogate model seeded by physics-based simulations

(oxDNA) to predict structure sizes, integrating this

with a quality-diversity algorithm for iterative op-

timization. This process efficiently generates diverse

candidate structures while minimizing computational

costs. Additionally, we investigate the effects of tem-
perature on DNA structures, exploring its impact on

their properties and functionality.

2 Introduction

DNA nanotechnology leverages DNA’s pro-

grammability, scalability, and cost-effective synthesis

to create nanoscale structures and molecular de-

vices, including molecular robots. These robots

rely on components such as processors and actua-

tors, using DNA as their core material. Practical

applications range from drug delivery to envi-

ronmental monitoring, emphasizing efficiency and

adaptability. However, synthesizing unique DNA

strands for diverse structures remains a significant

hurdle. This thesis addresses the optimization of

DNA molecular assemblies, focusing on size as a

proxy for robot shapes. Using a quality-diversity

approach, we integrate a surrogate model with

physics-based simulations (oxDNA) to predict and

refine structure sizes. Iterative optimization cycles

improve the surrogate model and efficiently generate

diverse candidates. Additionally, we examine how

temperature influences DNA structures, aiming

to understand their effects on their stability and

functionality, which is critical for future molecular

device applications.

3 Methods

We optimize DNA structures of various sizes using

a quality diversity (QD) algorithm. Starting with

basic DNA building blocks, we construct strand sets

and use a surrogate model to predict structure sizes,

avoiding direct evaluations with resource-intensive

simulators like oxDNA. The surrogate model is ini-

tially seeded with datasets evaluated using oxDNA.

The optimization alternates between QD-based ex-

図 1: An overview of surrogate-based Quality Diver-

sity algorithm

ploration and surrogate model refinement, retraining

with promising or mispredicted strand sets simulated

by oxDNA. The workflow involves three stages Fig.1):

1. Generating an initial dataset. 2. Predicting

DNA structure volumes and stability. 3. Creating

diverse DNA strand sets based on predictions. This

method efficiently predicts structure sizes and assem-

bles DNA strands into various configurations.

3.1 Generation of the preliminary dataset

We generate the initial dataset based on the pre-

viously mentioned library and optimize the domains

using MAP-Elites [5] and Peppercorn [1]. Next, we

select the top 10 domains with the highest reaction-

type entropy (ERT) values and mean structural size

(MSS). These domains are further optimized using

NUPACK [3] and a genetic algorithm. As a result,

we select a set of 20 DNA strands as the initial data

for each library. This method is entirely based on [2].

図 2: Prediction of volume and stability for L3

3.2 Surrogate Model: Prediction of DNA

structure volume

In the Quality Diversity algorithm used in this

study, the evaluation of individuals is based on the

volume prediction of DNA structures, with the sta-

bility of the DNA structure as a feature. These values
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図 3: Results of Secondary QD Analysis

can be obtained using oxDNA, but running simula-

tions for all individuals is computationally expensive.

Therefore, we created a surrogate model to estimate

the volume and stability values as a substitute.

3.3 Random Forest Regressor

We use the Random Forest Regressor for predic-

tion. This regression method fits numerous deci-

sion trees to subsamples of the dataset and averages

their outputs to control overfitting. Based on [4], re-

gressors outperform neural networks for the current

dataset. TensorFlow was used for implementation,

with bootstrapping applied due to the small training

dataset.

3.4 Inputs and Outputs

The model inputs consist of the initial dataset and

DNA strand sets derived from the QD algorithm.

These inputs include the type of DNA strand, tem-

perature at the start of the simulation, and connec-

tivity (second smallest eigenvalue of the graph). Out-

puts include the volume (calculated as the convex

hull of nucleotide positions) and stability (based on

binding transitions during simulations).

3.5 Mapping DNA strand sets

The MAP-Elites algorithm [5] was employed to

generate diverse DNA strand sets producing DNA

structures of varying volumes. Temperature was cho-
sen as one of the features, as it significantly affects

DNA structure size and behavior.

4 Results

図 4: Comparison the volume of QD results and ini-

tial dataset

Fig. 2 presents volume predictions using the ini-

tial dataset for training and testing. R2 values (0.7,

0.6, 0.8) indicate improved accuracy over the initial

dataset, making the model suitable for further QD

iterations.

Fig. 3 show DNA strand set generation, with each

dot representing a set. The numbers 277, ..., 358

correspond to simulation temperatures. In each grid,

the vertical axis is the free energy from NUPACK,

and the horizontal axis is the predicted stability, both

normalized to [0, 1]. The color indicates the predicted

volume of DNA structures, also normalized.

As temperature increases, normalized free energy

values decrease for all libraries, with b
c becoming

smaller. This suggests higher temperatures lead to

increased free energy and decreased stability.

5 Conclusion and future work

This method allows for the efficient generation of

DNA strand assemblies for DNA structures of vari-

ous sizes. Additionally, the accuracy of volume and

stability predictions for DNA structures in this work-

flow is considered sufficient. Moreover, obtaining

DNA strand assemblies with specific characteristics,

not just volume, is possible. Furthermore, using the

DNA strand assemblies obtained from this workflow,

I would like to investigate the relationship between

the size of DNA structures and their interactions and

further explore the optimal size of DNA structures for

swarm behavior.

謝辞
本研究の一部は，JSPS科研費 JP19KK0261の助成
を受けたものです．
参考文献
[1] Badelt, S., et al.: J. R. Soc. Interface, Vol. 17,

No. 167, p. 20190866 (2020).

[2] Cazenille, L., Baccouche, A. and Aubert-

Kato, N.: J. R. Soc. Open Science, Vol. 8, No. 10,

p. 210848 (2021).

[3] Fornace, M. E., et al.: NUPACK: analysis and

design of nucleic acid structures, devices, and sys-

tems (2022).

[4] Grinsztajn, L., Oyallon, E. and Varoquaux, G.:

Adv Neural Inf Process Syst, Vol. 35, pp. 507–520

(2022).

[5] Mouret, J.-B. and Clune, J.: Illuminating

search spaces by mapping elites, arXiv preprint

arXiv:1504.04909 (2015).

2


