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1 Introduction
Comparative constructions pose a challenge in Nat-

ural Language Inference (NLI), which is the task of
determining whether a text entails a hypothesis. In
formal semantics, there is a rich body of work on
comparatives and gradable expressions using the no-
tion of degree. However, a logical inference system
for comparatives has not been sufficiently developed
for use in the NLI task. In this paper, we present a
compositional semantics that maps various compar-
ative constructions in English to logical forms (LFs)
via Combinatory Categorial Grammar (CCG) parsers
and combine it with an inference system based on au-
tomated theorem proving.1

2 System architecture
Figure 1 shows the pipeline of the proposed system.

First, the premises and hypothesis are mapped to LFs
based on A-not-A analysis via CCG parsing and tree
transformation. Next, a theorem prover judges yes,
no, or unknown with the axioms for comparatives and
lexical knowledge.

Degree semantics: A-not-A analysis To analyze
gradable adjectives, we use the two-place predicate
of entities and degrees as developed in degree-based
semantics [1]. For instance, the sentence Ann is 5 feet
tall is analyzed as tall(ann, 5 feet), where tall(x, δ)
is read as “x is (at least) as tall as degree δ”. Com-
parative expressions are analyzed in terms of first-
order logic, using the so-called A-not-A analysis [2];
for example, Chris is taller than Alex is analyzed as
∃δ(tall(chris, δ) ∧ ¬tall(alex, δ)), which asserts that
there is a degree δ of tallness that Chris satisfies but
Alex does not. We present semantic LFs for some
example sentences using A-not-A analysis, as shown
in Table 1. This analysis can be naturally extended to
not comparative forms of adjectives such as (1), but
also generalized quantifiers, adverbial phrases, and
the comparative forms of adverbs such as (2-4).

Compositional semantics in CCG In CCG, the
mapping from syntax to semantics is defined by as-
signing syntactic categories to words [3]; the LF of
a sentence is then compositionally derived using λ-
calculus. However, there is a gap between the syn-
tactic structures assumed in formal semantics and the
output derivation trees of existing CCG parsers. For

1GitHub repository with code and data: https://github.
com/izumi-h/ccgcomp

Table 1: Logical forms of gradable constructions
based on A-not-A analysis
Sentence Logical form
(1) Ken is 2 inches taller than Harry. ∀δ(tall(harry, δ − 2′′) → tall(ken, δ))

(2) Most apples are red.
∃δ(∃x(apple(x) ∧ red(x) ∧many(x, δ))

∧¬∃x(apple(x) ∧ ¬red(x) ∧many(x, δ)))

(3) Few children ran.
¬∃x∃δ(child(x) ∧many(x, δ) ∧ (δ > θmany(child))

∧∃e(run(e) ∧ (subj(e) = x)))

(4) Bob drove as carefully as John.
∃e1∃e2(drive(e1) ∧ (subj(e1) = bob) ∧ drive(e2)

∧(subj(e2) = john) ∧ ∀δ(careful(e2, δ) → careful(e1, δ)))

this reason, we modify the derivation trees provided
by CCG parsers in post-processing. For instance, we
compound expressions for comparatives and quanti-
fiers are combined as one word, such as a few, a lot
of, and at most.
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Insertion of lexical knowledge To test the com-
patibility of logical inferences and inferences involv-
ing lexical knowledge, we implement an abduction
mechanism to search for useful axioms drawn from
knowledge bases before the process of theorem prov-
ing. The strategy is similar to the one used in previous
studies [4] in which the system searches for lexical
relations from WordNet [5] and VerbOcean [6].

3 Experiments
For evaluation, we use five datasets: FraCaS [7];

MED [8]; SICK [9]; HANS [10]; CAD. CAD was
created for this study and includes problems related
to pragmatic inference.

Table 2 gives the results of the evaluation. Maj
is the accuracy of the majority baseline and Ours
the accuracy of our system. For FraCaS, MED, and
CAD, +rule shows the accuracy achieved by the addi-
tion of hand-coded rules, which correct the errors in
POS tagging and lemmatization. For CAD, we also
experimented with an implementation for pragmatic
inference. The accuracy is shown in +imp.

We compared our system with four logic-based sys-
tems (MN [11], LP [12, 13], MG [4], and GKR4 [14]),
three DL-based systems (RB, BERT [8], BERT+ [8],
and BF [15]), and two hybrid systems (HNB [14]
and HNX [14]). RB is a system that used a state-
of-the-art model, RoBERTa (RB) [16], trained on
MultiNLI [17].

The results show that our system achieved high ac-
curacy on the logical inferences with adjectives, com-
paratives, quantifiers, numerals, and adverbs. For

https://github.com/izumi-h/ccgcomp
https://github.com/izumi-h/ccgcomp


P1: John is tall.
P2: :
H: :

Sentences

Syntactic Parsing
CCG parsers

John
N
NP

lex

is
(S\NP )/(Sadj\NP )

tall
Sadj\NP

S\NP
>

S
<

•

CCG Derivation Trees

Modifying Trees
Tsurgeon

Transformed
CCG Trees

•

P1: ∃δ(tall(john, δ) ∧ (δ = θtall))
P2: :
H: :

Logical Forms (A-not-A)

•

Semantic Parsing
ccg2lambda

Insertion of
lexical knowledge

TPTP
format

Axioms
Comp

Yes, No,
Unknown•

Theorem Proving
Vampire

• Abduction Mechanism
WordNet, VerbOcean

Figure 1: Overview of the proposed system

Table 2: Accuracy on FraCaS, MED, SICK, HANS, and CAD datasets
FraCaS
Section GQ Adj Com Att
#All 73 22 31 13
Maj .49 .41 .61 .62
RB .73 .45 .52 .69
MN .77 .68 .48 .77
LP .93 .73 – .92
Ours .97 .82 .90 .92
+rule .99 .95 .90 .92

MED
Label gq gqlex
#All 498 691
Maj .58 .63
BERT .56 .58
BERT+ .54 .68
RB .57 .55
Ours .97 .91
+rule .97 .92

SICK
#All 4927
Maj .57
RB .56
LP .81
MG .83
Ours .82

HANS
Gold yes unknown
#All 15000 15000
Maj .50 .50
BF .87 .61
RB 1.0 .56
GKR4 .84 .59
HNB .84 .54
HNX .83 .25
Ours .98 .83

CAD
#All 257
Maj .43
RB .58
Ours .81
+rule .82
+rule +imp .92

HANS, [10] reported that DL-based systems tend to
erroneously output yes for cases in which the hypoth-
esis was a constituent or a sub-string of the premise,
such as disjunctive sentences. To see how a system
performs on these cases, we present the accuracy for
each gold answer label (yes and unknown). While the
accuracy when the gold label was yes was close to
100% in both our system and the DL-based system
(RB), the accuracy of our system outperformed RB
when the label is unknown.

4 Conclusion
In this study, we presented an end-to-end logic-

based inference system for handling complex infer-
ences with comparatives, quantifiers, numerals, and
adverbs. The entire system is transparently composed
of several modules and can solve complex inferences
for the right reason. This study contributes to the
study of computational modeling and the evaluation
of formal semantic theories, as well as to the creation
of challenging NLI problems that DL-based models
need to address.
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