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1. Introduction. Recently, various extended type
systems have been developed to explain phenom-
ena related to coercion [1, 2, 13]. These systems
are enriched with more fine-grained types than is
commonly assumed in formal semantics, which
enables us to analyze selectional restrictions of
predicates as type matching. In such systems, an
operation for dealing with coercion is triggered
when a predicate and its argument cause a type
mismatch. However, there is a problem with the
naive assumption that coercion is only triggered
by type mismatch: coercion can be contextually
triggered without any type mismatch. For exam-
ple, (1a) has the reading in (1b), even though the
literal reading does not produce a type mismatch.

(1) a. The lion escaped.
b. The actor who plays the lion

at The Lion King escaped
(from the theater).

Moreover, type inference with selectional restric-
tion is context-sensitive in a way that is analo-
gous to presupposition (see §3). These phenom-
ena suggest that coercion is not only driven by
type matching in semantic composition but also
by inference with contextual information.

This paper proposes a formal analysis of coer-
cion in the framework of Dependent Type Seman-
tics (DTS) [3, 4], a framework of proof-theoretic
semantics that combines dependent types with
underspecification. Coercion is treated at the
stage of type checking implemented as proof
search, rather than at the stage of semantic com-
position. We show that this analysis captures the
inferential aspect of coercion as shown by phe-
nomena like (1).
2. DTS. Dependent types have been used to ana-
lyze various aspects of natural languages [6, 12].
Compared with simple types, dependent types can
express types depending on terms. For instance,
man(x) is a type depending on a term x that cor-
responds to the proposition that x is a man. De-
pendent types include Π-type (dependent function

type), written (x : A) → B, and Σ-type (de-
pendent product type), written (x : A) × B or[

x : A
B

]
(see [10] for details). A term having a de-

pendent type is called a proof term. For instance,
p : man(x) expresses that a proof term p has the
type man(x), in other words, p is a proof for the
proposition that x is a man.

In contrast to model-theoretic semantics, the
semantics of natural language based on depen-
dent types can be called proof-theoretic seman-
tics, where the meaning of a sentence is re-
garded as a proof-condition (verification condi-
tion), rather than as a truth-condition. By taking
proof-conditions as a central aspect of meaning,
semantic theories based on dependent types are
particularly suitable for capturing inferential as-
pects of interpretation.

DTS [3, 4] differs from the previous studies in
that it has underspecified term @ to handle phe-
nomena that depend on the preceding contexts
such as presupposition and anaphora. For exam-
ple, the sentence in (2) is given the semantic rep-
resentation (SR) containing the term @ having the
Σ-type for the proposition that there is an entity x
such that x is a man. A term having the Σ-type is
a pair of objects, from which the projection func-
tion π1 takes the first element.

(2) He whistled.

whistle

(
π1

(
@ :

[
x : entity
man(x)

]))
Such an underspecified SR is compositionally de-
rived from a parse tree for a sentence. Then the
well-formedness of an SR is proved via type-
checking. This process of type-checking involves
a process of constructing a proof term for @. By
replacing @ with the constructed term, we can re-
solve presupposition and anaphora and thus ob-
tain a fully specified SR for the sentence. The
overall process is shown in (3). See [3, 4] for
more details.
3. An Analysis in DTS. Selectional restrictions
show the behavior of presupposition [1, 8, 9].

(3) parse trees
semantic composition−−−−−−−−−−→ underspecified SRs

type-checking−−−−−−→
(proof search)

well-formed SRs
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escape :

[
x : entity
animate(x)

]
→ type

(CON)

....
T F l

animate : type

....
? : T F l

animate

(@ : T F l
animate) : T F l

animate

@

π1(@ : T F l
animate) :

[
x : entity
animate(x)

] (ΣE)

escape(π1(@ : T F l
animate)) : type

(ΠE)

Figure 1: Type checking for the SR of “The lion escaped.”

For instance, the predicate marry presupposes
that its arguments are human; this presupposition
projects out of constructions such as negation:

(4) Bob didn’t marry Mary.
⇒ Bob and Mary are human.

To capture these presuppositional inferences,
we analyze selectional restrictions as presuppo-
sitions in DTS (cf. [8]). For example, we define a
lexical entry for escape as follows.

escape : λx.escape(π1(@ : T F x
animate))

where T F x
animate ≡

t pair :

[
y : entity
animate(y)

]
F source : entity → type

p : F source(x)

R :

[
w : entity
F source(w)

]
→

[
y : entity
animate(y)

]
→ type

R(x, p)t pair


In simple type theory, the type of a one-place
predicate is usually defined as entity → prop.
In DTS, by contrast, the type of escape is[

x : entity
animate(x)

]
→ type, where animate(x) speci-

fies the selectional restriction of the predicate.
Note that selectional restrictions are represented
as predicates, not as types. In the case of (1b),
we have an SR escape(π1(@ : T F l

animate)),
where l is the term of the lion. The type
checking for this SR goes as shown in Fig. 1.
Here the term @ launches a proof search for
the missing information: it searches a 5-tuple
(t pair, F source, p, R, q) that satisfies the con-
dition T F l

animate from the context, where q is a
proof term for R(l, p)t pair. In short, @ acts to
locate an object of type entity that satisfies the
property animate, which is the selectional re-
striction of predicate escape, associated with the
lion from the context. More specifically, t pair
is a pair (a, t) of an actor a (of type entity) and
a proof t that the actor is animate; F source is
a property of the lion l such that the first argu-

ment of the relation R has F target as a selec-
tional restriction. In this case, we can choose the
predicate “y plays w at the Lion King” for R and
animate for F target. By replacing @ with the
constructed term and taking its first projection in
terms of π1, we can obtain an SR escape(a, t),
which captures the intended reading of (1b). In
the case of the literal reading of (1a), we can use
the equality relation to fill in R, which leads to
the desired interpretation. Using the mechanism
of presupposition projection in DTS, we can also
account for the inference patterns in (4).

Although details are omitted here due to space
limitations, the present theory can naturally ex-
tend to other phenomena discussed in the litera-
ture [11], in particular, to logical polysemies (co-
predication) [1], metaphor and aspectual verbs
[7]. In our proof-theoretic account, an effort to
obtain an interpretation by coercion can be mea-
sured by the complexity of a proof search. This
accounts for an aspect of interpretation involved
in metaphor, coercion and aspectual verbs called
complicity [5]. In the full version of the pa-
per, a more detailed comparison with other type-
theoretic approaches where coercion is treated at
the stage of semantic composition [1, 2] will be
addressed too.
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